The revolution in neural networks is a significant technological shift. It has an impact on not only all aspects of production and life, but also economic research. Neural networks have not only been a significant tool for economic study in recent years, but have also become an important topic of economics research, resulting in a large body of literature. The stock market is an important part of the country’s economic development, as well as our daily lives. Large dimensions and multiple collinearity characterize the stock index data. To minimize the number of dimensions in the data, multiple collinearity should be removed, and the stock price can then be forecast. To begin, a deep autoencoder based on the Restricted Boltzmann machine is built to encode high-dimensional input into low-dimensional space. Then, using a BP neural network, a regression model is created between low-dimensional coding sequence and stock price. The deep autoencoder’s capacity to extract this feature is superior to that of principal component analysis and factor analysis, according to the findings of the experiments. Utilizing the coded data, the proposed model can lower the computational cost and achieve higher prediction accuracy than using the original high-dimensional data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.