The use of interactive engagement strategies to improve learning in introductory physics is not new, but have not been used as often for upper-division physics courses. We describe the development and implementation of a Studio Optics course for upper-division physics majors at Kansas State University. The course adapts a three-stage Karplus learning cycle and other elements to foster an environment that promotes learning through an integration of lecture, laboratories, and problem solving. Some of the instructional materials are described. We discuss the evaluation of the course using data collected from student interviews, a conceptual survey, an attitudinal survey, and the instructor's reflections. Overall, students responded positively to the new format and showed modest gains in learning. The instructor's experiences compared favorably with the traditional course that he had taught in the past.
In prior research, the classification of concepts into three types-descriptive, hypothetical and theoreticalhas allowed for the association of students' use of different concept types with their level of understanding. Previous studies have also examined the ways in which students link concepts to determine whether students have a meaningful understanding of principles of evolution. In this study, we build on our previous work that seeks to examine how students use prior knowledge in new situations and context, as well as present an adaptation of concept and concept-link categorization previously used in biology education research. In this adaptation, concepts are categorized on the basis of the observability of the concept exemplars and are shown to be dependent upon the knowledge level of the student. We use this categorization method to examine how students use prior knowledge when presented with an opportunity to apply physics in a new context, namely, wavefront aberrometry. Results indicate that students primarily utilize lower-level concepts, which is in agreement with previous research findings. We also found that students are able to create links between different levels of concepts, and that the type of links created can give insight to how deeply they understood the physics of the new context.
It is commonly known that students have difficulty connecting the techniques they learn in math classes with necessary steps for solving physics problems. In this study, introductory-level physics students were given a set of pure math problems and a set of physics problems that required them to use the exact same mathematical processes. The students were then asked to pair the analogous problems and explain the pairings. Presented here are the results of that study, which support previous findings that students have difficulty determining how the two are connected and give some insight into what can be done to help scaffold that connection in the future.
Abstract. This study focuses on how students apply previous learning of light and basic geometric optics to the context of wavefront aberrometry. In one aspect of this study we compared the application of previous learning of students who had studied light and basic geometric optics in a physics course with those who had not and thus could only apply knowledge obtained in an informal way. We sought to examine what differences exist in the way they construct an understanding of wavefront aberrometry. The data showed that students with no formal instruction tended to rely on experiential knowledge as one would expect. However, the students with formal instruction relied on textbook knowledge and tended to discount or ignore their everyday experiences. We will discuss what this difference in knowledge types might imply about the knowledge construction process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.