N(G),N(G)-dimethyl-L-arginine (asymmetric dimethylarginine or ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) are post-translationally synthesized amino acids of nuclear proteins. Upon release during protein turnover, they are not used in protein synthesis, but are excreted or metabolized by dimethylarginine dimethylaminohydrolase (DDAH) found in many tissues. DDAH is present in monocytic and polynuclear cells of blood, but no report has appeared of its presence in red blood cells (RBCs). Because methylated arginines can inhibit nitric oxide synthase (NOS) and elevations are reported in several diseases, we explored whether RBCs express this enzyme. DDAH is present in RBCs as supported by hydrolysis of both ADMA and L-NMMA, but not symmetric dimethylarginine, and by immunoprecipitation/Westem blot using a specific monoclonal antibody to human DDAH. In a pilot study of end-stage renal disease (ESRD) patients, RBC DDAH activity with ADMA as substrate correlated inversely with age (p = 0.005) and enzyme activities were higher in patients with greater diastolic blood pressure drops during hemodialysis (p = 0.02). Similar correlations were found with white cell DDAH activity. Thus, human RBCs can hydrolyze methylated arginines. These findings indicate the RBC could be used to assess the status of DDAH in various disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.