Background Population-based cancer survival estimates provide valuable insights into the effectiveness of cancer services and can reflect the prospects of cure. As part of the second phase of the International Cancer Benchmarking Partnership (ICBP), the Cancer Survival in High-Income Countries (SURVMARK-2) project aims to provide a comprehensive overview of cancer survival across seven high-income countries and a comparative assessment of corresponding incidence and mortality trends. Methods In this longitudinal, population-based study, we collected patient-level data on 3•9 million patients with cancer from population-based cancer registries in 21 jurisdictions in seven countries (
BackgroundChanging population-level exposure to modifiable risk factors is a key driver of changing cancer incidence. Understanding these changes is therefore vital when prioritising risk-reduction policies, in order to have the biggest impact on reducing cancer incidence. UK figures on the number of risk factor-attributable cancers are updated here to reflect changing behaviour as assessed in representative national surveys, and new epidemiological evidence. Figures are also presented by UK constituent country because prevalence of risk factor exposure varies between them.MethodsPopulation attributable fractions (PAFs) were calculated for combinations of risk factor and cancer type with sufficient/convincing evidence of a causal association. Relative risks (RRs) were drawn from meta-analyses of cohort studies where possible. Prevalence of exposure to risk factors was obtained from nationally representative population surveys. Cancer incidence data for 2015 were sourced from national data releases and, where needed, personal communications. PAF calculations were stratified by age, sex and risk factor exposure level and then combined to create summary PAFs by cancer type, sex and country.ResultsNearly four in ten (37.7%) cancer cases in 2015 in the UK were attributable to known risk factors. The proportion was around two percentage points higher in UK males (38.6%) than in UK females (36.8%). Comparing UK countries, the attributable proportion was highest in Scotland (41.5% for persons) and lowest in England (37.3% for persons). Tobacco smoking contributed by far the largest proportion of attributable cancer cases, followed by overweight/obesity, accounting for 15.1% and 6.3%, respectively, of all cases in the UK in 2015. For 10 cancer types, including two of the five most common cancer types in the UK (lung cancer and melanoma skin cancer), more than 70% of UK cancer cases were attributable to known risk factors.ConclusionTobacco and overweight/obesity remain the top contributors of attributable cancer cases. Tobacco smoking has the highest PAF because it greatly increases cancer risk and has a large number of cancer types associated with it. Overweight/obesity has the second-highest PAF because it affects a high proportion of the UK population and is also linked with many cancer types. Public health policy may seek to mitigate the level of harm associated with exposure or reduce exposure levels—both approaches may effectively impact cancer incidence. Differences in PAFs between countries and sexes are primarily due to varying prevalence of exposure to risk factors and varying proportions of specific cancer types. This variation in turn is affected by socio-demographic differences which drive differences in exposure to theoretically avoidable ‘lifestyle’ factors. PAFs at UK country level have not been available previously and they should be used by policymakers in devolved nations. PAFs are estimates based on the best available data, limitations in those data would generally bias toward underestimation of PAFs. R...
Background Rare cancers here defined as those with an annual incidence rate less than 6/100,000 in Europe, pose challenges for diagnosis, treatments, and clinical decision-making. Information on rare cancers is scant. We updated the estimates of the burden of rare cancers in Europe, their time trends in incidence and survival, and provide information on centralization of treatments in seven European countries. Methods We analysed data on more than two million rare cancer diagnoses, provided by 83 cancer registries, to estimate European incidence and survival in 2000-2007 and the corresponding time trends during 1995-2007. Incidence rates were calculated as the number of new cases divided by the corresponding total person years in the population. Five-year relative survival (RS) was calculated by the Ederer-2 method. Seven registries
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.