Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.
Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by singlemolecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.genomic integrity | DNA repair | nonhomologous end-joining | super-resolution microscopy | single-molecule FRET C hromosomal double-strand breaks (DSBs), considered the most cytotoxic form of DNA damage, occur as a result of normal cellular processes (1, 2) as well as cancer therapies (3-5). The cellular DNA damage response (DDR) and repair pathways responsible for maintaining genomic integrity are highly regulated and synchronized processes, both temporally and spatially, involving the coordinated recruitment, assembly, and disassembly of numerous macromolecular complexes (6, 7). In mammalian cells, nonhomologous end-joining (NHEJ) is the primary DSB repair pathway; it is active throughout the cell cycle and is crucial for viability. Dysfunctional NHEJ is associated with several clinical conditions, including LIG4 syndrome and severe combined immunodeficiency (1,8). Despite its importance, however, the details of how the NHEJ complex assembles at DSBs, brings together a pair of breaks, and organizes subsequent catalytic repair steps remain unknown.In NHEJ, DSBs are initially recognized by the Ku 70/80 heterodimer (Ku), which encircles dsDNA ends (Ku:DNA) and serves as a molecular scaffold for recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4 like factor), and DNA ligase IV (LigIV) (1,(9)(10)(11)(12)(13)(14). Previous NHEJ models suggested that after binding of Ku to DNA ends, DNA-PKcs binds Ku:DNA to form a DNA-PK holoenzyme and bridges the broken ends (15-18); however, recent experiments indicate that DNAPKcs may have different roles in NHEJ, such as the stabilization of core NHEJ factors, recruitment and retention of accessory factors, involvement in the DDR signaling cascade, and repair of complex and clustered . In addition, recent structural studies have shown that XRCC4 and XLF form filamentous structures in vitro (26-28). Whether such filaments mediate repair in vivo has not yet been determined.Our present understanding of the cellular NHEJ response to DSBs ...
Summary Sporadic Alzheimer’s disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.
One of the most central questions about the repair of a double-strand DNA break (DSB) concerns how the two free DNA ends are brought together — a step called synapsis. Using single-molecule FRET (smFRET), we show here that both Ku plus XRCC4:DNA ligase IV are necessary and sufficient to achieve a flexible synapsis of blunt DNA ends, whereas either alone is not. Addition of XLF causes a transition to a close synaptic state, and maximum efficiency of close synapsis is achieved within 20 min. The promotion of close synapsis by XLF indicates a role that is independent of a filament structure, with action focused at the very ends of each duplex. DNA-PKcs is not required for the formation of either the flexible or close synaptic states. This model explains in biochemical terms the evolutionarily central synaptic role of Ku, X4L4, and XLF in NHEJ for all eukaryotes.
Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.