BACKGROUND Commercial vegetable production in the United States of America (USA) often relies on foliar insecticide sprays for managing key insect pests. However, foliar applications of insecticides have a number of drawbacks to the health of consumers, farmworkers and the environment. Drip chemigation is the application of pesticides to the soil through trickle (drip) irrigation systems, and can overcome a number of the drawbacks typical of foliar insecticide applications. RESULTS We conducted a two‐year study in five commercial fields of staked tomatoes in western North Carolina to compare the efficacy, economics and environmental impact of drip chemigation versus foliar sprays. Drip chemigation significantly reduced insecticide inputs, utilized more selective and environmentally compatible insecticides, and reduced the time lost to reentry intervals, while maintaining comparable efficacy and economic returns. CONCLUSIONS Drip chemigation was an effective tool for managing key insect pests, provided a broad range of human and environmental health benefits, and will likely become increasingly cost‐effective in the future as insecticide patents expire and more insecticide options become available.
The 2018 student debates of the Entomological Society of America were held at the Joint Annual Meeting for the Entomological Societies of America, Canada, and British Columbia in Vancouver, BC. Three unbiased introductory speakers and six debate teams discussed and debated topics under the theme ‘Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication’. This year’s debate topics included: 1) What is the most harmful invasive insect species in the world? 2) How can scientists diffuse the stigma or scare factor surrounding issues that become controversial such as genetically modified organisms, agricultural biotechnological developments, or pesticide chemicals? 3) What new/emerging technologies have the potential to revolutionize entomology (other than Clustered Regularly Interspaced Short Palindromic Repeats)? Introductory speakers and debate teams spent approximately 9 mo preparing their statements and arguments and had the opportunity to share this at the Joint Annual Meeting with an engaged audience.
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle from Asia, spreads through human-mediated movement and active flight. The effects of adult feeding and overwintering conditions on A. planipennis energy reserves (e.g., lipid, glycogen, and sugars) and flight are poorly understood. We conjectured that the potential energetic demands associated with the production of cryoprotectants might affect dispersal capacity and partially explain slower spread of A. planipennis in Minnesota than in the other states. Two studies sought to measure the effects of adult feeding on lipid content and flight capacity. Adult A. planipennis were fed shamel ash, Fraxinus uhdei Wenzig, leaves for 0-20 d after emergence, and half were flown on a custom flight mill for 24 h, before being frozen for comparative lipid analysis with a control group. The second study compared the effects of adult feeding on energy reserves and flight capacity of A. planipennis that were originally from St. Paul, Minnesota but overwintered in infested logs placed in Grand Rapids, Minnesota (low winter temperature, -34°C) or St. Paul, Minnesota (-26.3°C). Live adults consumed foliage at a constant rate, but lipid content (percentage of fresh mass) did not change with increases in feeding or flight. Adult glycogen content declined with flight and increased only slightly with feeding. Overwintering location affected survival rates but not energy reserves or flight capacity. These results suggest that the flight capacity of A. planipennis is largely determined before emergence, with no differences in energy reserves after cryoprotectant investment.
Background The yellow fever mosquito, Aedes aegypti, vectors several pathogens responsible for human diseases. As a result, this mosquito species is a priority for control by mosquito control districts in Florida. With insecticide resistance development becoming a concern, alternative control strategies are needed for Ae. aegypti. Sterile insect technique (SIT) is an increasingly popular option that is being explored as a practical area-wide control method. However, questions about sterile male performance persist. The objectives of this study were to determine the extent to which hypoxia exposure prior to and during irradiation effects the longevity, activity and mating competitiveness of sterile male Ae. aegypti. Methods Male longevity was monitored and analyzed using Cox regression. Mosquito activity was recorded by an infrared beam sensor rig that detected movement. Competing models were created to analyze movement data. Fecundity and fertility were measured in females mated with individual males by treatment and analyzed using one-way ANOVAs. Mating competition studies were performed to compare both hypoxia and normoxia treated sterile males to fertile males. Competitiveness of groups was compared using Fried’s competitiveness index. Results First, we found that subjecting Ae. aegypti pupae to 1 h of severe hypoxia (< 1 kPa O2) did not directly increase mortality. One hour of hypoxia was found to prevent decreases in longevity of irradiated males compared to males irradiated in normoxic conditions. Exposure to hypoxia prior to irradiation did not significantly improve activity of sterile males except at the highest doses of radiation. Hypoxia did significantly increase the required dose of radiation to achieve > 95% male sterility compared to males irradiated under normoxic conditions. Males sterilized after an hour in hypoxic conditions were significantly more competitive against fertile males compared to males irradiated under normoxic conditions despite requiring a higher dose of radiation to achieve sterility. Conclusions Hypoxia was found to greatly improve key performance metrics in sterile male Ae. aegypti without any significant drawbacks. Little work other than increasing the target dose for sterility needs to be conducted to incorporate hypoxia into SIT programs. These results suggest that SIT programs should consider including hypoxia in their sterile male production workflow. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.