Sensory systems encounter remarkably diverse stimuli in the external environment. Natural stimuli exhibit timescales and amplitudes of variation that span a wide range. Mechanisms of adaptation, a ubiquitous feature of sensory systems, allow for the accommodation of this range of scales. Are there common rules of adaptation across different sensory modalities? We measured the membrane potential responses of individual neurons in the visual, somatosensory, and auditory cortices of male and female mice to discrete, punctate stimuli delivered at a wide range of fixed and nonfixed frequencies. We find that the adaptive profile of the response is largely preserved across these three areas, exhibiting attenuation and responses to the cessation of stimulation, which are signatures of response to changes in stimulus statistics. We demonstrate that these adaptive responses can emerge from a simple model based on the integration of fixed filters operating over multiple time scales.
Sensory systems encounter remarkably diverse stimuli in the external environment. Natural stimuli exhibit timescales and amplitudes of variation that span a wide range. Mechanisms of adaptation, ubiquitous feature of sensory systems, allow for the accommodation of this range of scales. Are there common rules of adaptation across different sensory modalities? We measured the membrane potential responses of individual neurons in the visual, somatosensory and auditory cortices to discrete, punctate stimuli delivered at a wide range of fixed and nonfixed frequencies. We find that the adaptive profile of the response is largely preserved across these three areas, exhibiting attenuation and responses to the cessation of stimulation which are signatures of response to changes in stimulus statistics. We demonstrate that these adaptive responses can emerge from a simple model based on the integration of fixed filters operating over multiple time scales.
Previous investigations of EEG β processes can be divided into two categories: one in which β enhancement is obtained and one in which β suppression is obtained. The current study investigated the β band range (14-30Hz) by subdividing the signal into 2Hz sub-bands. We presented participants with photographs of faces expressing happy, angry, sad or neutral expressions under two primary tasks in which participants judged the emotion the individual was expressing, or how the way the other person feels makes the participant feel. Results revealed a pattern of both β suppression and enhancement that appeared to depend on whether the task required first-person emotional experience (self-task) or perspective-taking (other-task). Specifically, the self-task was associated with enhancement while the other-task was associated with suppression. While some previous research has reported β enhancement to emotion-inducing stimuli, other research has reported β suppression in tasks also associated with mu suppression. To our knowledge, the current data are the first to reveal both β enhancement and suppression within a single experiment and suggests a neurocognitive dissociation of enhancement and suppression within the β band range.
Sensory neurons not only encode stimuli that align with their receptive fields but are also modulated by context. For example, the responses of neurons in mouse primary visual cortex (V1) to gratings of their preferred orientation are modulated by the presence of superimposed orthogonal gratings (“plaids”). The effects of this modulation can be diverse: some neurons exhibit cross-orientation suppression while other neurons have larger responses to a plaid than its components. We investigated whether these diverse forms of masking could be explained by a unified circuit mechanism. We report that the suppression of cortical activity does not alter the effects of masking, ruling out cortical mechanisms. Instead, we demonstrate that the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons uniformly exhibit cross-orientation suppression, whereas in weakly-selective neurons masking depends on the spatial configuration of the stimulus, with effects transitioning systematically between suppression and facilitation. Thus, the diverse responses of mouse V1 neurons emerge as a consequence of the spatial structure of the afferent input to V1, with no need to invoke cortical interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.