Rationale
Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and a number of cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells. Previous studies have shown that FoxO1 knockout in mice results in embryonic lethality at E11 due to impaired vascular development. In contrast, somatic deletion of FoxO1 is associated with hyperproliferation of endothelial cells. Thus, the precise role of FoxO1 in the endothelium remains enigmatic.
Objective
To determine the effect of endothelial-specific knockout and overexpression of FoxO1 on vascular homeostasis.
Methods and Results
We show that endothelial cell (EC)-specific disruption of FoxO1 in mice phenocopies the full knockout. While endothelial expression of FoxO1 rescued otherwise FoxO-null animals, overexpression of constitutively active FoxO1 resulted in increased EC size, occlusion of capillaries, elevated peripheral resistance, heart failure and death. Knockdown of FoxO1 in ECs resulted in marked inhibition of basal and VEGF-induced Akt-mTOR1 signaling.
Conclusions
Our findings suggest that in mice endothelial expression of FoxO1 is both necessary and sufficient for embryonic development. Moreover, FoxO1-mediated feedback activation of Akt maintains growth factor-responsive Akt/mTORC1 activity within a homeostatic range.
Single nucleotide polymorphisms (SNPs) are DNA sequence variations that can affect the expression or function of genes. As a result, they may lead to phenotypic differences between individuals, such as susceptibility to disease, response to medications, and disease progression. Millions of SNPs have been mapped within the human genome providing a rich resource for genetic variation studies. Adenosine-to-inosine RNA editing also leads to the production of RNA and protein sequence variants, but it acts on the level of primary gene transcripts. Sequence variations due to RNA editing may be misannotated as SNPs when relying solely on expressed sequence data instead of genomic material. In this study, we screened the human SNP database for potential cases of A-to-I RNA editing that cause amino acid changes in the encoded protein. Our search strategy applies five molecular features to score candidate sites. It identifies all previously known cases of editing present in the SNP database and successfully uncovers novel, bona fide targets of adenosine deamination editing. Our approach sets the stage for effective and comprehensive genome-wide screens for A-to-I editing targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.