In a transmission electron microscope, electrons are described by matter-waves with wavelengths five orders of magnitude smaller than optical electromagnetic waves. Analogous to optical holography, electron wavefronts can be shaped using nanoscale holographic gratings. Here we demonstrate a novel, scalable nanofabrication method for creating off-axis holographic gratings that demonstrate near ideal diffraction efficiencies for binary, sinusoidal, and blazed grating groove profiles. We show that this method can produce up to 50 µm diameter area gratings that diffract up to 68% of the transmitted electron wave into a desired diffraction order with less than 7% into any other order. Additionally, we find that the amount of inelastically scattered electrons from the material gratings remaining in the coherent diffraction orders from the gratings is negligible in the far field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.