Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
Electrospray deposition (ESD) is a spray coating process that utilizes a high voltage to atomize a flowing solution into charged microdroplets. These self-repulsive droplets evaporate as they travel to a target substrate, depositing the solution solids. Our previous research investigated the conditions necessary to minimize charge dissipation and deposit a thickness-limited film that grows in area over time through self-limiting electrospray deposition (SLED). Such sprays possess the ability to conformally coat complex three-dimensional objects without changing the location of the spray needle or orientation of the object. This makes them ideally suited for the post-processing of materials fabricated through additive manufacturing (AM), opening a paradigm of independent bulk and surface functionality. Having demonstrated three-dimensional coating with film thickness in the range of 1-50 µm on a variety of conductive objects, in this study we employed model substrates to quantitatively study the technique's limits with regard to geometry and scale. Specifically, we examined the effectiveness of thickness-limited ESD for coating recessed features with gaps ranging from 50 µm to 1 cm, as well as the ability to coat surfaces hidden from the line-of-sight of the spray needle. This was then extended to the coating of hydrogel structures printed by AM, demonstrating that coating could be conducted even into the body of the structures as a means to create hydrophobic surfaces without affecting the absorption-driven humidity response. File list (6) download file view on ChemRxiv Manuscript.pdf (810.15 KiB) download file view on ChemRxiv SupportingInformation.pdf (354.12 KiB) download file view on ChemRxiv SupplementaryVideo1.mp4 (20.99 MiB) download file view on ChemRxiv SupplementaryVideo2.mp4 (60.98 MiB) download file view on ChemRxiv SupplementaryVideo3.MOV (3.59 MiB) download file view on ChemRxiv SupplementaryVideo4.MOV (3.65 MiB)
Electrospray deposition (ESD) is a versatile micro-/nanocoating technology that utilizes the competition between the surface charge of a droplet and its surface tension to create monodisperse generations of micro-/nanodroplets. ESD can deposit uniform thin films by including dilute solutes in these droplets. One mode of ESD, self-limiting ESD (SLED), has been shown to exist when glassy polymers are sprayed in a volatile solvent below the polymer glass-transition temperature (T g). This leads to charge accumulation on the coating surface that slows the growth of the film thickness. Since solutes can be easily blended in dilute ESD solutions, we investigate the SLED limits of self-limiting and non-self-limiting solute blends. As a motivating application, we focus on the mechanical properties of the films. Specifically, we blend self-limiting polystyrene and SU-8 epoxy resin with different non-self-limiting mechanical modifiers, such as plasticizers and curing agents. To characterize the resulting morphologies and mechanical properties, we employ scanning electron microscopy and nanoindentation of the as-received porous and thermally smoothed films. The results illustrate the formation of composited polymers that exhibit self-limiting ability by SLED, depending on the interaction between the two components. Furthermore, mechanical properties could be effectively fine-tuned within these compositional ranges. This signifies that the 3D coating capabilities available through SLED can be enhanced by incorporating additional functionalities and properties beyond the base matrix.
Conventional methods used to identify the dynamical properties of unknown media from scattered mechanical waves rely on analytical or numerical manipulations of the wave equation. These methods show their limitations in scenarios where the analyzed medium is moderately sized and the diffraction from the material edges influences the scattered fields significantly, such as non-destructive diagnostics and metamaterial characterization. Here, we show that convolutional neural networks can interpret the diffracted fields and learn the mapping between the scattered fields and all the effective material parameters including mass density and stiffness tensors from a small set of numerical simulations. Furthermore, networks trained with synthetic data can process physical measurements and are very robust to measurement errors. More importantly, the trained network provides insight into the dynamic behavior of matter including quantitative measures of the scattered field sensitivity to each material property and how the sensitivity changes depending on the material under test.
Electrospray deposition (ESD) is a versatile micro/nano coating technology that utilizes the competition between surface charge of a droplet and its surface tension to create monodisperse generations of micro/nano droplets. ESD can deposit uniform thin films by including dilute solutes in these droplets. One mode of ESD, self-limiting electrospray deposition (SLED), has been shown to exist when glassy polymers are sprayed in a volatile solvent below the polymer glass transition temperature (Tg). This leads to charge accumulation on the coating surface that slows the growth of the film thickness. Since solutes can be easily blended in dilute ESD solutions, we investigate the SLED limits of self-limiting and non-self-limiting solute blends. As a motivating application, we focus on mechanical properties of the film. Specifically, we blend self-limiting polystyrene (PS) and SU-8 epoxy resin with different non-self-limiting mechanical modifiers, such as plasticizers and curing agents. To characterize the resulting morphologies and mechanical properties, we employ scanning electron microscopy and nanoindentation of as received and smoothed films. The results illustrate the formation of composited polymers that exhibit self-limiting ability by SLED, depending on the interaction between the two components. Further, mechanical properties could be effectively fine-tuned within these compositional ranges. This signifies the 3D coating capabilities through SLED can be implemented incorporating additional functionalities and properties beyond the base matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.