Gates in error-prone quantum information processors are often modeled using sets of one-and twoqubit process matrices, the standard model of quantum errors. However, the results of quantum circuits on real processors often depend on additional external "context" variables. Such contexts may include the state of a spectator qubit, the time of data collection, or the temperature of control electronics. In this article we demonstrate a suite of simple, widely applicable, and statistically rigorous methods for detecting context dependence in quantum circuit experiments. They can be used on any data that comprise two or more "pools" of measurement results obtained by repeating the same set of quantum circuits in different contexts. These tools may be integrated seamlessly into standard quantum device characterization techniques, like randomized benchmarking or tomography. We experimentally demonstrate these methods by detecting and quantifying crosstalk and drift on the publicly accessible 16-qubit ibmqx3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.