A generic feature of scalar extensions of general relativity is the coupling of the scalar degrees of freedom to the trace T of the energy-momentum tensor of matter fields. Interesting phenomenology arises when the trace becomes positive-when pressure exceeds one third of the energy density-a condition that may be satisfied in the core of neutron stars. In this work, we study how the positiveness of the trace of the energy-momentum tensor correlates with macroscopic properties of neutron stars. We first show that the compactness for which T = 0 at the stellar center is approximately equation-of-state independent, and given by C = 0.262 +0.011 −0.017 (90% confidence interval). Next, we exploit Bayesian inference to derive a probability distribution function for the value of T at the stellar center given a putative measurement of the compactness of a neutron star. This investigation is a necessary step in order to use present and future observations of neutron star properties to constrain scalar-tensor theories based on effects that depend on the sign of T .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.