Thermal weed control methods have been incorporated into weed control programs in organic and conventional production systems. Flaming is commonly used, but steaming has been proposed to increase efficiency of heat transfer to weeds and reduce the risk of fire. The objective of this research was to measure injury to leaves of plant species that differ in leaf morphology and to measure injury to plants at different stages of plant development. The study was conducted in a glasshouse and plants were exposed to steaming at 400 C for 0.36 s鈥攅quivalent to a steaming speed of 2 km/h. Overall, leaf thickness was the best morphological characteristic to predict injury (r2 = 0.51), with greater thickness resulting in less injury. For broadleaf species only, species with wider leaves were injured more than species with narrower leaves (r2 = 0.64). Injury was greatest when plants had fewer than six true leaves and when their shoots were less than 10 cm long. There was a wide range of injury across species, and the grass species bermudagrass and perennial ryegrass were injured (68 to 81%) more than other species such as common purslane and English daisy (23 to 34%). Biomass of all species tested was reduced by approximately 40%, indicating that leaf injury was not the sole effect of steaming on plant growth. These results indicated that considering both visual estimates of injury and morphological characteristics is important to properly assess thermal weed control effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.