The aim of this study was to map the spatial distribution of enchytraeids and humus forms in a study area in the Italian Alps by means of a knowledge-based modeling approach. The modeled area is located around Val di Sole and Val di Rabbi (Trentino, Italy) and includes the forested parts in the range between 1100 m and 1800 m a.s.l. Elevation and slope exposure are considered as environmental covariates. Models were implemented regarding the spatial distribution of three variables at the landscape scale: 1) enchytraeids indicating mull humus forms, 2) enchytraeids indicating moder/mor humus forms, 3) humus forms showing an OH horizon. All three models reveal a consistent trend of an increasing accumulation of plant residues and humus in organic layers from low to high elevations and from south-facing to north-facing slopes. Validation and uncertainty analysis of input data confirm these trends, although some deviations are to be expected (RMSE values from validation sites range from 26.3 to 36.2 percentage points). Effects of additional potentially influencing variables may lead to uncertainties of the model predictions especially at positions with particular landforms (e.g. gullies and ridges). In the high mountains environmental conditions are often quite heterogeneous due to a highly variable topography, which also affects the species composition of the decomposer community and the occurrence of different humus forms.
Planet Earth is covered by very common Terrestrial (not submersed), Histic (peats) and Aqueous (tidal) humipedons. Beside these typical topsoils there are other more discrete humipedons, generated by the interaction of mineral matter with microorganisms, fungi and small plants (algae, lichens and mosses). In some cases roots and their symbionts can be a driving force of litter biotransformation, in other cases a large amount of decaying wood accommodates particular organisms which interfere with and change the normal process of litter decomposition. Particular microorganisms inhabit submerged sediments or extreme environments and can generate specialised humipedons with grey-black or even astonishingly flashing colours. We describe all these common but still unknown humipedons, defining diagnostic horizons and proposing a first morphofunctional classification, which still has to be improved. At the end of the article, the hypothesis of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.