Brain-machine interfaces (BMIs) can restore motor function to people with paralysis but are currently limited by the accuracy of real-time decoding algorithms. Recurrent neural networks (RNNs) using modern training techniques have shown promise in accurately predicting movements from neural signals but have yet to be rigorously evaluated against other decoding algorithms in a closed-loop setting. Here we compared RNNs to other neural network architectures in real-time, continuous decoding of finger movements using intracortical signals from nonhuman primates. Across one and two finger online tasks, LSTMs (a type of RNN) outperformed convolutional and transformer-based neural networks, averaging 18% higher throughput than the convolution network. On simplified tasks with a reduced movement set, RNN decoders were allowed to memorize movement patterns and matched able-bodied control. Performance gradually dropped as the number of distinct movements increased but did not go below fully continuous decoder performance. Finally, in a two-finger task where one degree-of-freedom had poor input signals, we recovered functional control using RNNs trained to act both like a movement classifier and continuous decoder. Our results suggest that RNNs can enable functional real-time BMI control by learning and generating accurate movement patterns.
A key factor in the clinical translation of brain-machine interfaces (BMIs) for restoring hand motor function will be their robustness to changes in a task. With functional electrical stimulation (FES) for example, the patient's own hand will be used to produce a wide range of forces in otherwise similar movements. To investigate the impact of task changes on BMI performance, we trained two rhesus macaques to control a virtual hand with their physical hand while we added springs to each finger group (index or middle-ring-small) or altered their wrist posture. Using simultaneously recorded intracortical neural activity, finger positions, and electromyography, we found that predicting finger kinematics and finger-related muscle activations across contexts led to significant increases in prediction error, especially for muscle activations. However, with respect to online BMI control of the virtual hand, changing either training task context or the hand's physical context during online control had little effect on online performance. We explain this dichotomy by showing that the structure of neural population activity remained similar in new contexts, which could allow for fast adjustment online. Additionally, we found that neural activity shifted trajectories proportional to the required muscle activation in new contexts, possibly explaining biased kinematic predictions and suggesting a feature that could help predict different magnitude muscle activations while producing similar kinematics.
Objective. Extracting signals directly from the motor system poses challenges in obtaining both high amplitude and sustainable signals for upper-limb neuroprosthetic control. To translate neural interfaces into the clinical space, these interfaces must provide consistent signals and prosthetic performance. Approach. Previously, we have demonstrated that the Regenerative Peripheral Nerve Interface (RPNI) is a biologically stable, bioamplifier of efferent motor action potentials. Here, we assessed the signal reliability from electrodes surgically implanted in RPNIs and residual innervated muscles in humans for long-term prosthetic control. Main results. RPNI signal quality, measured as signal-to-noise ratio, remained greater than 15 for up to 276 and 1054 days in participant 1 (P1), and participant 2 (P2), respectively. Electromyography from both RPNIs and residual muscles was used to decode finger and grasp movements. Though signal amplitude varied between sessions, P2 maintained real-time prosthetic performance above 94% accuracy for 604 days without recalibration. Additionally, P2 completed a real-world multi-sequence coffee task with 99% accuracy for 611 days without recalibration. Significance. This study demonstrates the potential of RPNIs and implanted EMG electrodes as a long-term interface for enhanced prosthetic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.