Abstract-Analysis of wave function intensity, eigen energy and transmission coefficients in GaN/AlGaN superlattice nanostructure has been carried out using Transfer Matrix Method (TMM). The effect of change in Aluminum mole fraction in Al x Ga 1−x N barrier region has been included through variable effective mass in the Schrödinger time independent equation. The behaviour of wave function intensity has been studied for superlattice structure by changing the barrier width. The effect of smaller barrier width on wave function intensity in case of superlattice is clearly observed due to interaction of wave functions in the adjacent wells and it provides a new insight in the nature of interacting wave functions for thin barriers in GaN/AlGaN superlattice structures. The barrier widths have been optimized for the varying number of wells leading to better quantum confinement. The iterative method (Secant Method) is used to determine value of electron energy E. The number of iterations need to converge the value of E has been simulated. Transmission coefficients have been determined as a function of energy E considering tunneling effect for three well structures using TMM. Analysis has been extended to show surface image of wave function intensity for 5 and 6 wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.