Due to the challenges of spent fuel accumulation, the nuclear industry is exploring more cost-effective solutions for spent fuel management. The burnup-credit method, in application for storage and transport of the spent fuel, gained traction over recent decades since it can remove the over-conservatism of the “fresh-fuel” approach. The presented research is focused on creating an innovative, best estimate approach of the burnup-credit method for boiling water reactor (BWR) spent fuel based on the results of neutronic/thermal-hydraulic coupled full core simulations. The analysis is performed using a Polaris/DYN3D sequence. Four different shuffling procedures were used to estimate the possible range of the BWR fuel discharged burnup variation. The results showed a strong influence of the shuffling procedure on the final burnup distribution. Moreover, a comparison of the 2D lattice and 3D coupled nodal approaches was conducted for the criticality estimation of single fuel assemblies. The analysis revealed substantial improvement in criticality curves obtained with the full-core model. Finally, it was shown that the benefit from the burnup-credit method is larger in the case of more optimal fuel utilisation-based shuffling procedures. The new approach developed here delivers a promising basis for future industrial optimisation procedures and thus cost optimisation.
This study performed criticality analysis for the GBC-68 storage cask loaded with boiling water reactor (BWR) spent fuel at the discharged burnups obtained from the full-core simulations. The analysis was conducted for: (1) different reloading scenarios; (2) target burnups; and (3) two fuel assembly types—GE14 and SVEA100—to estimate the impact each of the three factors has on the cask reactivity. The BWR spent fuel composition was estimated using the results of the nodal analysis for the advanced boiling water reactor (ABWR) core model developed in this study. The nodal calculations provided realistic operating data and axial burnup and coolant density profiles, for each fuel assembly in the reactor core. The estimated cask’s keff were compared with the fresh fuel and peak reactivity standards to identify the benefit of the burnup credit method applied to the BWR spent fuel at their potential discharge burnups. The analysis identified the significant cask criticality reduction from employing the burnup credit approach compared to the conventional fresh fuel approach. However, the criticality reduction was small compared to the peak reactivity approach, and could even disappear for low burnt fuel assemblies from non-optimal reloading patterns. In terms of cask manufacturing, the potential financial benefit from using the burnup credit approach was estimated to be USD 3.3 million per reactor cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.