The value of reversed-phase high-performance liquid chromatography (RP-HPLC) and the field of proteomics would be greatly enhanced by accurate prediction of retention times of peptides of known composition. The present study investigates the hydrophilicity/hydrophobicity of amino acid sidechains at the N-and C-termini of peptides while varying the functional end-groups at the termini. We substituted all 20 naturally occurring amino acids at the N-and C-termini of a model peptide sequence, where the functional end-groups were N α -acetyl-X-and N α -amino-X-at the N-terminus and -X-C α -carboxyl and -X-C α -amide at the C-terminus. Amino acid coefficients were subsequently derived from the RP-HPLC retention behaviour of these peptides and compared to each other as well as to coefficients determined in the centre of the peptide chain (internal coefficients). Coefficients generated from residues substituted at the C-terminus differed most (> 2.5 min between the -X-C α -carboxyl and -X-C α -amide peptide series) for hydrophobic side-chains. A similar result was seen for the N α -acetyl-X-and N α -amino-X-peptide series, where the largest differences in coefficient values (> 2 min) were observed for hydrophobic peptides. Coefficients derived from substitutions at the Cterminus for hydrophobic amino acids were dramatically different compared to internal coefficients for hydrophobic side-chains, ranging from 17.1 min for Trp to 4.8 min for Cys. In contrast, coefficients derived from substitutions at the N-terminus showed relatively small differences from the internal coefficients. Subsequent prediction of peptide retention time, within an error of just 0.4 min, was achieved by a predictive algorithm using a combination of internal coefficients and a weighted coefficient for the C-terminal residue.
We desired to evaluate the chromatographic selectivity for peptides of silica-based RP high-performance liquid chromatography stationary phases with various modifications (polar embedding and polar endcapping on C(18) columns; ether-linked phenyl column with polar endcapping) compared with n-alkyl (C(18), C(8)) and aromatic phenylhexyl columns. Thus, we have designed and synthesized two series of synthetic peptide standards with the sequence Gly-Gly-Leu-Gly-Gly-Ala-Leu-Gly-X-Leu-Lys-Lys-amide, where the N-terminal either contains a free α-amino group (AmC series) or is N(α)-acetylated (AcC series) and where position X is substituted by Gly, Ala, Val, Ile, Phe or Tyr. These represent series of peptides with single substitutions of n-alkyl (Gly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.