Online health information platforms (e.g., WebMD, healthtap) have become popular as they make health information accessible to large crowds. These platforms provide users with a set of communication services that trigger formation of ties as there are thousands of registered users, visitors or physicians, with a multitude of inherently complex interactions between them, which we model as an Interaction Network. Managers may utilize network understanding to reveal the true potential of their platforms as this understanding provides many valuable insights including identification of customer loyalty and their importance to network and community formation on the platform. The goal of this study is to identify and examine the structural and dynamic aspects of customer loyalty, which are considered as hubs in the largest component of the network. Two important pieces of information add to our understanding of hub behavior: the role (member/physician) and gender. We observe that the only growth pattern common to members as they evolve into a loyal customer can be best described as a step-function or a "staircase" function. We also find that one of the most prominent features of loyal customers examined on this health information platform appears to be dissassortativity. That is, loyal customers tend to form ties to member of different roles or gender. The findings further show that role disassorativity leads to communities of few loyal customers and other hand gender disassortativity leads to communities of many loyal customers. We articulate managerial implications of network understanding with respect to customer loyalty and service attractiveness as well.
In the original version of the book, the misspelt second author name "Dzordana Kariniasukaite" has been corrected to read as "Dzordana Kariniauskaite" in Chapter 65, frontmatter and backmatter, and the term "Date" in the title of Chapter 65 has been replaced with "Data" so that it should read as "Validity Issues of Digital Trace Data for Platform as a Service: A Network Science Perspective".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.