A mentor plays an important role in entrepreneurial development of an individual. He guides entrepreneurs from conception of business to product development and business growth. Previous literature on entrepreneurial learning is disseminated and not properly organized; it is difficult to even find pertinent and comprehensive articles on entrepreneurial learning. The research proposed in this article helps mentors to understand and find out what type of entrepreneurs need what kind of mentoring support. This article proposes a conceptual model for mentors and discusses that an entrepreneur may need different mentoring support and skills depending on the type of entrepreneurs, personality traits, or decision-making style and phase at which entrepreneurs are at that moment. This article will also help mentors in understanding what type of skills entrepreneurs need at each stage of mentoring relationship, that is, initiation, cultivation, separation, and redefinition stage.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -The purpose of this paper is to apply boosted regression trees (BRT) to a heterogeneous data set of residential property drawn from a jurisdiction in Malaysia, with the objective to evaluate its application within the mass appraisal environment in Malaysia. Machine learning (ML) techniques have been applied to real estate mass appraisal with varying degrees of success. Design/methodology/approach -To evaluate the performance of the BRT model two multiple regression analysis (MRA) models have been specified (linear and non-linear). One of the weaknesses of traditional regression is the need to a priori specify the functional form of the model and to ensure that all non-linearities have been accounted for. For a BRT model the algorithm does not require any predetermined model or variable transformations, making the process much simpler. Findings -The results show that the BRT model outperformed the MRA-specified models in terms of the coefficient of dispersion and mean absolute percentage error. While the results are encouraging, BRT models still lack transparency and suffer from the inability to translate variable importance into quantifiable variable effects. Practical implications -This paper presents a useful alternative modelling technique, BRT, for use within the mass appraisal environment in Malaysia. Its advantages include less intensive data cleansing, no requirement to specify the predictive underlying model, ability to utilise categorical variables without the need to transform them and not as data hungry, as for example, MRA. Originality/value -This paper adds to the knowledge in this area by applying a relatively new ML model, BRT to residential property data from a jurisdiction in Malaysia. BRT has shown promise as a strong predictive model when applied in other disciplines; therefore this research empirically tests this finding within real estate valuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.