Understanding the mechanisms of growth and inhibition during crystallization of calcium sulfate is of primary importance for many industrial applications. For instance, inhibition of the crystallization process may be required to prevent scale formation in pipes, boilers, heat exchangers, reactors, reverse osmosis membrane surfaces, cooling water systems, secondary oil recovery utilizing water flooding techniques and desalination evaporators, etc. On the other hand, control growth and morphology of gypsum crystals is desired in achieving higher filtration rate and higher productivity of phosphoric acid from phosphate rocks. In this regard, this basic study is carried out to understand effect of Aminotris (methylenephosphonic acid (ATMP) on calcium sulfate dihydrate (gypsum) crystallization. The time elapsed between the achievement of supersaturation and the appearance of a solid phase (termed as induction time) is measured under different supersaturation ratios ranging from 1.018 to 1.979. The data are used to calculate the surface energy, critical nucleus size, and crystal growth rates of gypsum under different conditions. The results show that, the induction time decreases exponentially with increasing the supersaturation ratio. In addition, the surface energy decreases with ATMP compared to the baseline (without ATMP). Interestingly, with addition of the ATMP, the crystals mean and median diameters are found to decrease. The inhibition efficiency ranges from 16% to 59% depending on supersaturation ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.