Spectral reflectance measurements of characterized (phase abundance, particle size) mixtures of olivine and orthopyroxene were utilized to define the correlations between spectral and albedo parameters of such assemblages and their mineralogical or textural properties. Thirty-three different spectral parameters falling into three general classes (relative or ratioed, absolute or albedo, and wavelength) were investigated for empirical sensitivity to one or more of the mixture properties. Theoretical considerations and previous experimental observations were utilized to understand their functional relationships. The ratio of areas for the 1-and 2-3tm absorption bands is shown to be a sensitive indicator of the olivineorthopyroxene abundance and is very nearly independent of particle size and mineral composition. In conjunction with an abundance determination, the wavelength position of the 1-3tm absorption feature can be utilized to determine the molar iron contents of the olivine and orthopyroxene phases. This calibration is insensitive to particle size but will produce systematic deviations if the phases have significantly different iron contents or if more than a few percent of a clinopyroxene component is present. The spectral albedo in the 0.6-to 0.7-#m region is relatively insensitive to phase abundance and can be used to constrain particle size if phase composition has been determined.
Pyroxene reflectance and transmittance spectra have been examined in a search for systematic relationships between spectral features and compositional variations and to assess the applicability of reflectance Spectroscopy to pyroxene geothermometry. Orthopyroxenes containing up to ∼11 % Wollastonite show a positive correlation between Fe2+ content and wavelength positions of the major absorption bands. Aluminum‐rich orthopyroxenes display absorption bands at lower than expected wavelengths. Spectral‐compositional relationships are more complex for clinopyroxenes, showing both positive and negative correlations between band positions and major cation abundances. These relationships are further complicated by the presence of significant amounts of other transition series elements such as Ti and Cr and by the presence of exsolved phases and compositional zonations. Even small‐scale exsolutions (<1 μm wide) seem to be sufficient to significantly alter spectral properties. Contours of the wavelength positions of band minima projected onto the pyroxene tetralateral generally exhibit concave downward shapes. The orientations of the contours relative to pyroxene geotherms are such as to effectively preclude the use of Spectroscopy to significantly constrain the temperatures of formation of pyroxenes.
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. CitationHamilton, V.E., et al., "Evidence for widespread hydrated minerals on asteroid (101955) Bennu." Nature astronomy 3, 4 (2019): p.
a b s t r a c t NASA's Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 lm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1-6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the $400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.