BackgroundA prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained.ResultsUsing a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences.ConclusionThe large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2667-5) contains supplementary material, which is available to authorized users.
It has been repeatedly demonstrated that the centromere-specific histone H3 (CENH3), a key component of the centromere, shows considerable variability between species within taxa. We determined the molecular structure and phylogenetic relationships of CENH3 in 11 Secale species and subspecies that possess distinct pollination systems and are adapted to a wide range of abiotic and biotic stresses. The rye (Secale cereale) genome encodes two paralogous CENH3 genes, which differ in intron-exon structure and are transcribed into two main forms of the protein, αCENH3 and βCENH3. These two forms differ in size and amino acid substitutions. In contrast to the reported differences in CENH3 structure between species within other taxa, the main forms of this protein in Secale species and subspecies have a nearly identical structure except some nonsynonymous substitutions. The CENH3 proteins are strictly controlled by genetic factors responsible for purifying selection. A comparison between Hordeum, Secale and Triticum species demonstrates that the structure of CENH3 in the subtribes Hordeinae and Triticinae evolved at different rates. The assumption that reticulate evolution served as a factor stabilizing the structure and evolutionary rate of CENH3 and that this factor was more powerful within Secale and Triticum than in Hordeum, is discussed.
Background: The cereal family Poaceae is one of the largest and most diverse angiosperm families. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the CENH3 gene, while some (wheat, barley, rye) have two. We applied a homology-based approach to sequenced cereal genomes, in order to finally trace the mutual evolution of the structure of the CENH3 genes and the nearby regions in various tribes. Results: We have established that the syntenic group or the CENH3 locus with the CENH3 gene and the boundaries defined by the Cdpk2 and bZip genes first appeared around 50 Mya in a common ancestor of the subfamilies Bambusoideae, Oryzoideae and Pooideae. This locus came to Pooideae with one copy of CENH3 in the most ancient tribes Nardeae and Meliceae. The βCENH3 gene as a part of the locus appeared in the tribes Stipeae and Brachypodieae around 35-40 Mya. The duplication was accompanied by changes in the exon-intron structure. Purifying selection acts mostly on αCENH3s, while βCENH3s form more heterogeneous structures, in which clade-specific amino acid motifs are present. In barley species, the βCENH3 gene assumed an inverted orientation relative to αCENH3 and the Cdpk2 gene was substituted with Cbp3c. As the evolutionary and breeding processes went on, the locus was growing in size due to an increasing distance between αCENH3 and βCENH3 because of a massive insertion of the main LTR-containing retrotransposon superfamilies, gypsy and copia, without any evolutionary preference on either of them. A comparison of the molecular structure of the locus in the A, B and D subgenomes of the hexaploid wheat T. aestivum showed that invasion by mobile elements and concomitant rearrangements took place in an independent way even in evolutionarily close species. Conclusions: The CENH3 duplication in cereals was accompanied by changes in the exon-intron structure of the βCENH3 paralog, which it was not in other plant taxa. The observed general tendency towards the expansion of the CENH3 locus reveals an amazing diversity of ways in which different species implement the scenario described in this paper.
Gene duplication and the preservation of both copies during evolution is an intriguing evolutionary phenomenon. Their preservation is related to the function they perform. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. Therefore, they represent a good model for a comparative study of the functional activity of the duplicated CENH3 genes and their protein products. We determined the organization of the CENH3 locus in rye (Secale cereale L.) and identified the functional motifs in the vicinity of the CENH3 genes. We compared the expression of these genes at different stages of plant development and the loading of their products, the CENH3 proteins, into nucleosomes during mitosis and meiosis. Using extended chromatin fibers, we revealed patterns of loading CENH3proteinsinto polynucleosomal domains in centromeric chromatin. Our results indicate no sign of neofunctionalization, subfunctionalization or specialization in the gene copies. The influence of negative selection on the coding part of the genes led them to preserve their conserved function. The advantage of having two functional genes appears as the gene-dosage effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.