We illustrate the description of correlated subsystems by studying the simple two-body Hydrogen atom.We study the entanglement of the electron and proton coordinates in the exact analytical solution. This entanglement, which we quantify in the framework of the density matrix formalism, describes correlations in the electron-proton motion.
. (1998). The influence of molecular gases and analytes on excitation mechanisms in atmospheric microwave sustained argon plasmas. Fresenius' Journal of Analytical Chemistry, 362(5), 440-446. DOI: 10.1007/s002160051104General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract The effect of introducing molecular compounds into argon plasmas has been studied using an expanding microwave induced plasma at atmospheric pressure. Besides the use of optical emission spectroscopy (OES), also the time dependent behavior of line intensities during power interruptions has been studied. From the measurements it is found that even an injection of small amounts of molecular compounds (> 0.5%) leads to important changes in excitation mechanisms in the plasma. It is also found that in the recombination zone downstream in the plasma an excitation mechanism which is independent of the electron density, e.g. excitation transfer from metastables or Penning ionization, must be responsible for the excitation of analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.