Sentiment analysis plays an important role in obtaining speakers' opinions or feelings towards events, products, topics, or services, helping businesses to improve their products. Moreover, governments and organizations investigate and solve current social issues by analyzing perspectives and feelings. This study evaluated the habit of chewing Khat (qat) leaves among the Yemeni society. Chewing Khat plant leaves, is a common habit in Yemen and East Africa. This paper proposes a model to detect information about the Khat chewing habit, how people explore it, and the preference for Khat leaves among Arabic people. A dataset consisting of user comments on 18 youtube videos was prepared through several natural language processing techniques. Several experiments were conducted using six machine learning classifiers and four ensemble methods. Support Vector Machine and Linear Regression had almost 80% accuracy, whereas xgboot was the most accurate ensemble method reaching 77%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.