Behavioral flexibility is an important adaptive response to changing environments for many animal species. Such plasticity may also promote the invasion of novel habitats by introduced species by providing them with the ability to expand or change their ecological niche, a longstanding idea with recent empirical support. At the individual level, flexibility may arise through innovation, in which an individual invents a new behavior, or through social learning, in which an individual adopts a behavior used by others. There is increasing evidence that the adaptive value of these two modes of learning, and the overall expression of behavioral flexibility, may vary with social and environmental context. In this paper, we propose that invasive species may change the degree to which they express behavioral flexibility in an adaptive manner during the different stages of invasion. Specifically, the "adaptive flexibility hypothesis" predicts that the expression of behavioral flexibility, and thus the diversity of behaviors observed in a population, will be high during the initial stage of introduction into a novel environment due to innovation, followed by a decline in behavioral diversity during the establishment and growth of a founding population due to social learning of successful behavioral variants. We discuss several alternatives to this hypothesis and suggest empirical and theoretical tests of these hypotheses. This "adaptive flexibility hypothesis" suggests that a more nuanced approach to the study of the behaviors employed by individuals in populations at different invasion stages could generate new insight into the importance of such flexibility during species invasions, and the evolution of behavioral plasticity in general.
While genetic diversity is hypothesized to be an important factor explaining invasion success, there is no consensus yet on how variation in source populations or demographic processes affects invasiveness. We used mitochondrial DNA haplotypic and microsatellite genotypic data to investigate levels of genetic variation and reconstruct the history of replicate invasions on three continents in a globally invasive bird, the monk parakeet (Myiopsitta monachus). We evaluated whether genetic diversity at invasive sites could be explained by (i) the native source populations from which they were derived and (ii) demographic bottlenecks during introduction. Genetic data indicated a localized source area for most sampled invasive populations, with limited evidence for admixing of native source populations. This pattern largely coincides with historical data on pet trade exports. However, the invasive populations are genetically more similar than predicted from the export data alone. The extent of bottleneck effects varied among invasive populations. The observed low genetic diversity, evidence of demographic contraction and restricted source area do not support the hypothesis that invasion is favoured by the mixing and recombining of genetic variation from multiple source populations. Instead, they suggest that reduced genetic variation through random processes may not inhibit successful establishment and invasion in this species. However, convergent selection across invasive sites could also explain the observed patterns of reduction and similarity in genetic variation and/or the restricted source area. In general, the alternative explanation of intraspecific variation in invasive potential among genotypes or geographic areas is neglected, but warrants more attention as it could inform comparative studies and management of biological invaders.
Members of the order Psittaciformes (parrots and cockatoos) are among the most long-lived and endangered avian species. Comprehensive data on lifespan and breeding are critical to setting conservation priorities, parameterizing population viability models, and managing captive and wild populations. To meet these needs, we analyzed 83, 212 life history records of captive birds from the International Species Information System and calculated lifespan and breeding parameters for 260 species of parrots (71% of extant species). Species varied widely in lifespan, with larger species generally living longer than smaller ones. The highest maximum lifespan recorded was 92 years in Cacatua moluccensis, but only 11 other species had a maximum lifespan over 50 years. Our data indicate that while some captive individuals are capable of reaching extraordinary ages, median lifespans are generally shorter than widely assumed, albeit with some increase seen in birds presently held in zoos. Species that lived longer and bred later in life tended to be more threatened according to IUCN classifications. We documented several individuals of multiple species that were able to breed for more than two decades, but the majority of clades examined had much shorter active reproduction periods. Post-breeding periods were surprisingly long and in many cases surpassed the duration of active breeding. Our results demonstrate the value of the ISIS database to estimate life history data for an at-risk taxon that is difficult to study in the wild, and provide life history data that is crucial for predictive modeling of future species endangerment and proactively managing captive populations of parrots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.