Shear-wave splitting measurements above the mantle wedge of the Mariana and southern Andean subduction zones show trench-parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic anisotropy may be caused by three-dimensional flow associated with along-strike variations in slab geometry. The Mariana and Andean subduction systems are associated with the largest along-strike variations of slab geometry observed on Earth and are ideal for testing the link between slab geometry and solid-state creep processes in the mantle. Here we show, with fully three-dimensional non-newtonian subduction zone models, that the strong curvature of the Mariana slab and the transition to shallow slab dip in the Southern Andes give rise to strong trench-parallel stretching in the warm-arc and warm-back-arc mantle and to abrupt rotations in stretching directions that are accompanied by strong trench-parallel stretching. These models show that the patterns of shear-wave splitting observed in the Mariana and southern Andean systems may be caused by significant three-dimensional flow induced by along-strike variations in slab geometry.
[1] Shear-wave splitting observations from many subduction zones show complex patterns of seismic anisotropy that commonly have trench-parallel fast directions. Three-dimensional flow may give rise to trench-parallel stretching and provide an explanation for these patterns of seismic anisotropy. Along-strike variations in slab geometry produce trench-parallel pressure gradients and are therefore a possible mechanism for three-dimensional flow. In this study we quantify the effects of variable slab dip, curved slabs, oblique subduction, and slab edges on flow geometry and finite strain in the mantle wedge of subduction zones. Temperature, dynamic pressure, velocity, and strain are calculated with high-resolution three-dimensional finite element models. These models include temperature-and stress-dependent rheology and parameterized slab and trench geometry. Thick layers (20-60 km) with strong trench-parallel stretching are observed in the mantle wedge when slab geometry involves a transition to slab dip less than 15°or strong curvature in the slab. In these cases, strong trench-parallel stretching develops when flow lines have an oblique to trench-normal orientation. This suggests that trench-parallel seismically fast directions may not indicate trench-parallel flow lines in systems with large along-strike variations. An oblique component of stretching is confined to a 20-30 km layer above the slab in systems with oblique subduction. The effects of slab edges include strong toroidal flow and focusing in the mantle near slab edges and trench-parallel flow that extends 50-100 km into the core of the mantle wedge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.