The 4 He3 bound states and the scattering of a 4 He atom off a 4 He dimer at ultra-low energies are investigated using a hard-core version of the Faddeev differential equations. Various realistic 4 He-4 He interactions were employed, amomg them the LM2M2 potential by Aziz and Slaman and the recent TTY potential by Tang, Toennies and Yiu. The ground state and the excited (Efimov) state obtained are compared with other results. The scattering lengths and the atom-diatom phase shifts were calculated for center of mass energies up to 2.45 mK. It was found that the LM2M2 and TTY potentials, although of quite different structure, give practically the same bound-state and scattering results.
We present a mathematically rigorous method suitable for solving three-body bound state and scattering problems when the inter-particle interaction is of a hard-core nature. The proposed method is a variant of the Boundary Condition Model and it has been employed to calculate the binding energies for a system consisting of three 4 He atoms. Two realistic He-He interactions of Aziz and collaborators, have been used for this purpose. The results obtained compare favorably with those previously obtained by other methods. We further used the model to calculate, for the first time, the ultra-low energy scattering phase shifts. This study revealed that our method is ideally suited for three-body molecular calculations where the practically hard-core of the inter-atomic potential gives rise to strong numerical inaccuracies that make calculations for these molecules cumbersome.LANL E-print physics/9612012.
We present our recent results on the scattering length of 4 He-4 He 2 collisions. These investigations are based on the hard-core version of the Faddeev differential equations. As compared to our previous calculations of the same quantity, a much more refined grid is employed, providing an improvement of about 10%. Our results are compared with other ab initio, and with model calculations.PACS numbers (2001)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.