Experimental data on the active Brownian motion of single particles in the RF (radio-frequency) discharge plasma under the influence of thermophoretic force, induced by laser radiation, depending on the material and type of surface of the particle, are presented. Unlike passive Brownian particles, active Brownian particles, also known as micro-swimmers, move directionally. It was shown that different dust particles in gas discharge plasma can convert the energy of a surrounding medium (laser radiation) into the kinetic energy of motion. The movement of the active particle is a superposition of chaotic motion and self-propulsion.
A multimodal dusty plasma formed in a positive column of the direct current glow discharge at superfluid helium temperatures has been studied for the first time. Formation of a liquid-like dusty plasma structure occurred after injection of polydisperse cerium oxide particles in the glow discharge. The coupling parameter ~10 determined for the dusty plasma structure corresponds very well to its liquid-like type. The cloud of nanoparticles and non-linear waves within the cloud were observed at T < 2 K. Solid helical filaments with length up to 5 mm, diameter up to 22 μm, total charges ~10
6
е, levitating in the gas discharge at the temperature ~2 K and pressure 4 Pa have been observed for the first time. Analysis of the experimental conditions and the filament composition allows us to conclude that the filaments and nanoclusters were formed due to ion sputtering of dielectric material during the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.