[1] Residual currents in Juan de Fuca Strait are observed to switch between two fundamental states: estuarine and transient. The estuarine regime, which prevails roughly 90% of the time in summer and 55% of the time in winter, has a fortnightly modulated, three-layer structure characterized by strong ($50 cm s À1 ) outflow above 60 ± 15 m depth, moderate ($25 cm s À1 ) inflow between 60 and 125 m depth, and weak ($10 cm s À1 ) inflow below 125 ± 10 m depth. Rotation increases the upper layer depth by 40 m on the northern side of the channel and upwelling-favorable coastal winds augment inflow in the bottom layer by as much as 5 cm s À1 . Rotation, combined with modulation of the estuarine currents by tidal mixing in the eastern strait, leads to fortnightly variability in the along-channel velocity and cross-channel positioning of the core flow regions. Transient flows, which occur roughly 10% of the time in summer and 45% of the time in winter, are rapidly evolving, horizontally and vertically sheared ''reversals'' in the estuarine circulation generated during poleward wind events along the outer coast. Major events can persist for several weeks, force a net inward transport, and give rise to an O(10) km wide, surface-intensified, O(100) cm s À1 inflow along the southern (Olympic Peninsula) boundary of the strait. This ''Olympic Peninsula Countercurrent'' is typically accompanied by an abrupt decrease in salinity, indicating that it is a buoyancy flow originating with low-density water on the northern Washington shelf.
Abstract. Low-frequency current, temperature, and salinity variations over the shelf break in the southeastern Beaufort Sea (Mackenzie Shelf) are examined to determine the response of seasonally ice-free waters to wind forcing and the role of submarine canyons in upwelling events and shelf circulation. Upwelling events were found to be statistically correlated to northeasterly winds, which transport surface waters offshore and draw up water from deeper layers. The response to alongshore wind stress is significantly amplified in Mackenzie Canyon, where isopycnal displacements of over 400 m are observed. Such displacements are then observed to propagate eastward at a phase velocity near 0.6 m s -1. The canyon is thus a site of intense upwelling, while the collapse of displaced isopycnals subsequent to cessation of wind forcing creates a disturbance propagating northeast along shelf as a free internal Kelvin wave.
Abstract. Two major earthquakes near the Central Kuril Islands (M w =8.3 on 15 November 2006 and M w =8.1 on 13 January 2007) generated trans-oceanic tsunamis recorded over the entire Pacific Ocean. The strongest oscillations, exceeding several meters, occurred near the source region of the Kuril Islands. Tide gauge records for both tsunamis have been thoroughly examined and numerical models of the events have been constructed. The models of the 2006 and 2007 events include two important advancements in the simulation of seismically generated tsunamis: (a) the use of the finite failure source models by Ji (2006Ji ( , 2007 which provide more detailed information than conventional models on spatial displacements in the source areas and which avoid uncertainties in source extent; and (b) the use of the three-dimensional Laplace equation to reconstruct the initial tsunami sea surface elevation (avoiding the usual shallowwater approximation). The close agreement of our simulated results with the observed tsunami waveforms at the openocean DART stations support the validity of this approach. Observational and model findings reveal that energy fluxes of the tsunami waves from the source areas were mainly directed southeastward toward the Hawaiian Islands, with relatively little energy propagation into the Sea of Okhotsk. A marked feature of both tsunamis was their high-frequency content, with typical wave periods ranging from 2-3 to 15-20 min. Despite certain similarities, the two tsunamis were essentially different and had opposite polarity: the leading wave of the November 2006 trans-oceanic tsunami was positive, while that for the January 2007 trans-oceanic tsunami was negative. Numerical modeling of both tsunamis indicates that, due to differences in their seismic source properties, the 2006 tsunami was more wide-spread but less focused than the 2007 tsunami.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.