It is shown that the impedance spectroscopy allows identification of the resistive switching mechanisms in complex composite structures. This statement was demonstrated on an example of organic based sandwich structures with a modified polymer matrix as an active element. The impedance spectroscopy scanning was performed for a series of intermediate states formed within the switching process. Analysis of the experimentally obtained impedance spectra shows that the electron transport is provided by delocalized charge carriers and proceeds via conducting filaments formed in a highly resistive matrix. The filament configuration changes during the switching. With the shift from isolating to conducting states, single isolated filaments are reorganized into a branched network.
Herein, we present an overview of the approaches for the synthesis of phthalocyanines bearing electron-withdrawing halogen-, nitro- and N-substituted imide functional groups in different positions of the phthalocyanine macrocycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.