Eutrophication is one of the major problems for surface water quality in Norway, particularly in the lowlands near settlements and agricultural areas. Here, we present a new index based on nondiatomaceous benthic algae (Periphyton index of trophic status, PIT) which is developed on a dataset of [500 samples from [350 sites from the Norwegian mainland and can be used to describe trophic status at a river site. PIT indicator values for benthic algae taxa are derived from water total phosphorus concentrations and range from 1.87 for Stigonema hormoides to 68.91 for Tribonema sp. PIT site values range from 3.42 to 44.45 and cover a range from oligotrophic to eutrophic conditions. The relationship between the PIT and the total phosphorus concentration has one major threshold at 10 lg/l TP, with a slow increase below and a steep increase above 10 lg/l. We conclude that benthic algae species composition at nutrient poor sites reacts only slightly to small increases in phosphorus concentration, while it is most sensible to eutrophication in the range between 10 and 30 lg TP/l. For the genus Oedogonium, we found a significant positive correlation between filament width and TP concentration, making Oedogonium an easy to use eutrophication indicator.
Abstract. We conducted a 3-year artificial deepening of the thermocline in the dimictic Lake Breisjøen, southern Norway, by means of a large submerged propeller. An adjacent lake served as untreated reference. The manipulation increased thermocline depth from 6 to 20 m, caused a significant increase in the heat content, and delayed ice-on by about 20 days.There were only minor changes in water chemistry. Concentrations of sulphate declined, perhaps due to greater reduction of sulphate at the sediment-water interface. Concentrations of particulate carbon and nitrogen decreased, perhaps due to increased sedimentation velocity. Water transparency increased. There was no significant change in concentration of phosphorus, the growth-limiting nutrient.There were few significant changes in principal biological components. Phytoplankton biomass and productivity did not change, although the chlorophyll-a concentration showed a small decrease. Phytoplankton species richness increased, and the species composition shifted. Growth of periphyton increased. There was no change in the macrophyte community. The manipulation did not affect the zooplankton biodiversity, but caused a significant shift in the relative abundance (measured as biomass) in the two major copepod species. The manipulation did not affect the individual density, but appeared to have changed the vertical distribution of zoobenthos. Fish populations were not affected.The lake is oligotrophic and clearwater and the manipulation did not change the supply of phosphorus, and thus there were only minor changes in lake chemistry and biology. Effects might be larger in eutrophic and dystrophic lakes in which internal processes are stronger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.