The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.
The autosomal Booroola fecundity gene (FecB) mutation in sheep increases ovulation rate and litter size, with associated effects on ovarian physiology and hormone profiles. Analysis of segregation in twelve families (379 female progeny) identified linkage between the mutation, two microsatellite markers (OarAE101 and OarHH55, Zmax > 9.0) and epidermal growth factor (EGF) from human chromosome 4q25 (Zmax > 3.0). The marker OarAE101 was linked to secreted phosphoprotein 1 (SPP1, which maps to chromosome 4q21-23 in man) in the test pedigrees and independent families (Zmax > 9.7). The identification of linkage between the FecB mutation and markers from human chromosome 4q is an important step towards further understanding the control of ovulation rates in mammals.
The utilization of a deer antler model to study gene expression in tissues undergoing rapid growth has been hampered by an inability to sample the different tissue types. We report here a standardized procedure to identify different tissue types in growing antler tips and demonstrate that it can help in the classification of expressed sequence tags (ESTs). The procedure was developed using observable morphological markers within the unstained tissue at collection, and was validated by histological assessments and virtual Northern blotting. Four red deer antlers were collected at 60 days of growth and the tips (top 5 cm) were then removed. The following observable markers were identified distoproximally: the dermis (4.86 mm), the subdermal bulge (2.90 mm), the discrete columns (6.50 mm), the transition zone (a mixture of discrete and continuous columns) (3.22 mm), and the continuous columns (8.00 mm). The histological examination showed that these markers corresponded to the dermis, reserve mesenchyme, precartilage, transitional tissue from precartilage to cartilage, and cartilage, respectively. The gene expression studies revealed that these morphologically identified layers were functionally distinct tissue types and had distinct gene expression profiles. We believe that precisely defining these tissue types in growing antler tips will greatly facilitate new discoveries in this exciting field. Anat Rec 268: 125-130, 2002.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.