The effect of substituents on the position and intensity of the electronic absorption and fluorescence spectra of phthalocyanines (Pcs) was examined for 35 Pc compounds. When electron-releasing groups are bound to four alpha-benzo positions of the Pc skeleton, the B and Q bands shift to longer wavelength. Relative to this shift, the effect of introducing the same electron-releasing groups at the other four alpha positions amounts to about 1.6-2.0. Although the effect is not always clearly seen, introduction of electron-releasing groups in the beta-benzo positions of the Pc skeleton generally shifts the Q band to shorter wavelength. The effect of electron-withdrawing groups is exactly the opposite with respect to the alpha and beta positions. These effects can be reasonably explained by considering the magnitude of the atomic orbital coefficients of the carbon atoms derived from molecular orbital (MO) calculations. In addition, the following intriguing phenomena were observed in the experiments, although not all were explained theoretically: 1) the splitting of the Q band of metal-free Pcs decreases with increasing wavelength of the Q band, 2) the ring currents of Pcs with Q bands at longer wavelength are generally smaller, and 3) the absorption coefficients of the Q band of Pc compounds with 16-electron-releasing substituents are larger than those of the corresponding tetra- and octasubstituted Pcs by several tens of percent. 4) Our PPP calculations suggested that the absorption coefficient of the Q band of Pcs with more strongly electron releasing substituents is larger. 5) The second HOMO of the Pcs with the Q band at longer wavelength has b(1u) symmetry, as opposed to the a(2u) symmetry of normal Pcs. 6) Pcs showing S1 emission maxima at wavelengths longer than about 740 nm generally have quantum yields of less than 0.1.
In photodynamic therapy (PDT), photosensitizers are required to arrive in high concentrations at selective targets like cancer cells avoiding toxicity in healthy tissue. In this work, we propose the application of porous calcium carbonate carriers in the form of polycrystalline vaterite for this task. We investigated the loading efficiency for the photosensitizer Photosens in vaterite micro- and nanocarriers. A possible release mechanism depending on the surrounding pH was studied, showing a fast degradation of the carriers in buffers below pH7. These results hold out the prospect of a novel PDT drug delivery system. Variation of particle size or additional coatings allow custom-design of workload release curves. An intrinsic cancer-sensitivity can be expected from the pH-dependent release in the acidic microenvironment of cancer tissue.
The preparation and optical properties of peripherally substituted phthalocyanines and their analogs (i.e. naphthalocyanines, anthracyanines, aza-analogs of phthalocyanines, and tetraazaporphyrins) have been widely discussed. This review highlights methodologies that have been published in poorly known and mostly unavailable Russian journals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.