A rich variety of non-equilibrium dynamical phenomena and processes unambiguously calls for the development of general numerical techniques to probe and estimate a complex interplay between spatial and temporal degrees of freedom in many-body systems of completely different nature. In this work we provide a solution to this problem by adopting a structural complexity measure to quantify spatio-temporal patterns in the time-dependent digital representation of a system. On the basis of very limited amount of data our approach allows to distinguish different dynamical regimes and define critical parameters in both classical and quantum systems. By the example of the discrete time crystal realized in non-equilibrium quantum systems we provide a complete low-level characterization of this nontrivial dynamical phase with only processing bitstrings, which can be considered as a valuable alternative to previous studies based on the calculations of qubit correlation functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.