The deposition of Jurassic continental sedimentary rocks in the southern part of the Siberian continent (Transbaikalia) reflects the intensification of tectonomagmatic processes in this region. The most likely cause of this intensification was associated with the formation and development of the Mongol-Okhotsk orogenic belt. The latter was controlled in its turn by the closure of the Mongol-Okhotsk Ocean, for which the timing of its closure, as well as the formation of a collisional orogeny and its subsequent collapse are still under debate. We address this question by studying sediments of the Irkutsk Basin, which were deposited in a short time span in the Middle Jurassic, most likely during the Aalenian. The Sm-Nd data for bulk-rock sandstones demonstrate that the youngest samples of the Irkutsk Basin are characterized by a prominent contribution from a source within the juvenile crust of the Mongol-Okhotsk orogenic belt. U-Pb detrital zircon ages concur with the Sm-Nd data and show that the amount of material derived from local cratonic sources decreased in time whereas material from the remote Transbaikalian sources increased. Our data provide evidence that mountain growth in Transbaikalia intensified rapidly close to the Early and Middle Jurassic boundary.
The Late Paleozoic-Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur-North China continents. The timing and modalities of the oceanic closure are widely discussed. It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast (in modern coordinates), though the timing of this process remains uncertain. Recent studies have shown that both western (West Transbaikalia) and eastern (Dzhagda) parts of the ocean closed almost simultaneously at the Early-Middle Jurassic boundary. However, little information on the key central part of the oceanic suture zone is available. We performed U-Pb (LA-ICP-MS) dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone. These include the initial marine and final continental sequences of the East Transbaikalia Basin, deposited on the northern Argun-Idemeg terrane basement. We provide new stratigraphic ages for the marine and continental deposits. This revised chronostratigraphy allows assigning an age of ~165-155 Ma, to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin. This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean. We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent, challenging the widely supported scissor-like model of closure of the Mongol-Okhotsk Ocean. Different segments of the ocean closed independently, depending on the initial shape of the paleo continental margins.
The Kultuk volcano erupted at the axial South Baikal basin of the Baikal rift zone (BRZ). Now it exhibits facies of subvolcanic bodies, landlava eruptions and subaqueous pillow lavas and hyaloclastites. The volcano was controlled by the Obruchev fault that is currently a border of the basin which amplitude of vertical movements is rapidly decreasing in the westward direction. It is found that the Kultuk volcano was active at the beginning and end of the volcanic activity period of the Kamar, Stanovaya, and Bystrinskaya volcanic zones, which took place 18-12 Ma ago. In previous papers, it was assumed that dominant structures in the area under study were major Cenozoic shear displacements along the Main Sayan fault and/or along the Tunka rift valley; however, at the current stage of our study, linear configurations of the volcanic zones do not re veal any of such displacements. Based on analyses of distribution of volcanic rocks in the relief at the western coast of Lake Baikal, distinct vertical crustal movements are revealed; such movements started in the Early Miocene and continue to the present time. It is concluded that volcanism was controlled by the transtensional system of volcanic zones. Sources are iden tified for the shallow lithospheric mantle melt with the substantial admixture of the lowcrust component and deeper astheno spheric mantle melts in the Kamar and Stanovaya volcanic zones; for the Bystrinskaya volcanic zone, only components from the deeper source are revealed. The local shallow mantle magmatism occurred only within the lithosphere extension zone beneath the South Baikal basin. The lithosphere thinning is reflected in the change of activity from the sublithospheric to lithospheric sources under the Kamar zone. Rifting of the axial structure is recorded at the root of the Slyudyanka lithospheric block that was subjected to the collisionrelated Early Paleozoic metamorphism. Geochemical characteristics of the collision type components were inherited by the Miocene basaltic melts.
R e c e n t G e o d y n a m i c s
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.