The paper considers the numerical simulation of the flow of argon with account for the condensation process in the micronozzle and behind it. To describe phase transitions, the initial mathematical model of viscous heat-conducting gas flow is supplemented with the equation of formation and growth of condensation nuclei in the flow. The developed mathematical model allows for simulating the process of gas condensation at low pressures and temperatures. It is shown that the condensate mass fraction in the flow is not less than 1% at the pressure and temperature of 5 bar and 200 K, respectively, when argon flows out of a micronozzle to the environment with the pressure of 0.01 Pa. At the nozzle exit, the size of condensed particles reaches 80 angstroms. The obtained results confirm the necessity to take into account the condensation phenomenon in micronozzle flows of inert gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.