Composite heterophase poly(vinyl alcohol) (PVA) cryogels containing entrapped small droplets of Vaseline oil have been prepared and studied. Such oilfilled cryogels were formed via freeze-thaw treatment of freshly prepared oil-in-water emulsions containing varied volume fraction of lipophilic phase, and the influence of the amount of this phase, as well as the effects of freezing conditions on the physicomechanical (shear moduli) and thermal (gel fusion temperature and fusion enthalpy) characteristics of resulting composites have been explored. It was shown that over certain range of PVA concentrations in aqueous phase and a range of volume fraction of the hydrophobic phase its microdroplets performed as ''active'' fillers causing an increase in both the gel strength and the heat endurance of composites. The light microscopy data on the morphological features of such filled PVA cryogels revealed the effect of diminution in size of oil droplets entrapped in the gel matrix as compared with the initial emulsions. This effect can be explained by the disintegrating action of crushing and shear stresses arising upon the system freezing and growth of ice crystals. The oil-filled PVA cryogels were found to be capable of gradually releasing the lipophilic constituents (the Rose hips oil, in this case) in response to the cyclic mechanical compression.
Immobilization of microorganisms on/in insoluble carriers is widely used to stabilize functional activity of microbial cells in industrial biotechnology. We immobilized Rhodococcus ruber, an important hydrocarbon degrader, on biosurfactant-coated sawdust. A biosurfactant produced by R. ruber in the presence of liquid hydrocarbons was found to enhance rhodococcal adhesion to solid surfaces, and thus, it was used as a hydrophobizing agent to improve bacterial attachment to a sawdust carrier. Compared to previously used hydrophobizers (drying oil and n-hexadecane) and emulsifiers (methyl- and carboxymethyl cellulose, poly(vinyl alcohol), and Tween 80), Rhodococcus biosurfactant produced more stable and homogenous coatings on wood surfaces, thus resulting in higher sawdust affinity to hydrocarbons, uniform monolayer distribution of immobilized R. ruber cells (immobilization yield 29-30 mg dry cells/g), and twofold increase in hydrocarbon biooxidation rates compared to free rhodococcal cells. Two physical methods, i.e., high-resolution profilometry and infrared thermography, were applied to examine wood surface characteristics and distribution of immobilized R. ruber cells. Sawdust-immobilized R. ruber can be used as an efficient biocatalyst for hydrocarbon transformation and degradation.
In the present work, innovative composite biomaterials possessing bactericidal properties and based on the hexahistidine-tagged organophosphorus hydrolase (His6-OPH) entrapped in the poly(vinyl alcohol) cryogel (PVA-CG)/bacterial cellulose (BC) were developed. His6-OPH possesses lactonase activity, with a number of N-acyl homoserine lactones being the inducers of Gram-negative bacterial resistance. The enzyme can also be combined with various antimicrobial agents (antibiotics and antimicrobial peptides) to improve the efficiency of their action. In this study, such an effect was shown for composite biomaterials when His6-OPH was entrapped in PVA-CG/BC together with β-lactam antibiotic meropenem or antimicrobial peptides temporin A and indolicidin. The residual catalytic activity of immobilized His6-OPH was 60% or more in all the composite samples. In addition, the presence of BC filler in the PVA-CG composite resulted in a considerable increase in the mechanical strength and heat endurance of the polymeric carrier compared to the BC-free cryogel matrix. Such enzyme-containing composites could be interesting in the biomedical field to help overcome the problem of antibiotic resistance of pathogenic microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.