1. For binary mixtures of polybutadienes with differing molecular weights, a high temperature (or low frequency) transition was discovered, with the temperature-frequency position of the transition showing up as a function of the molecular weight of the low molecular weight constituents, and yet the transition does not depend on the concentration of these constituents. The value of the maximum for the mechanical loss tangent is determined by the concentration of low molecular weight components. 2. With regard to the viscoelastic behavior of the mixes at reduced temperatures, the transition reflects mainly the presence of the low molecular weight components, but at high temperatures the transition is indicative of the presence of the high molecular weight constituents. 3. The observed transition is associated with the manifestation of mobility of the molecules of the low molecular weight components, as a whole.
It is a known fact that the mechanical properties of rubber depend essentially upon the density (i.e., the crosslink density) of the vulcanization network. The dependence of the “equilibrium” (statistical) modulus of elasticity upon the concentration of crosslinks as well as the dependence of the tensile strength —has been studied in a series of investigations. In contrast to this, analogous investigations of the dynamic mechanical characteristics are practically nonexistent. We have undertaken our present work with the hope of filling this gap. Series of gum compounds were prepared from natural (smoked sheet) and synthetic polyisoprene (SKI), sodium butadiene (SKB), butadiene-styrene (SKS-30A), and butadiene-nitrile (SKN-26) rubbers which varied in their degree of vulcanization. The percentage of sulfur and accelerator were varied as were the temperature and the time of vulcanization. The mechanical-dynamic characteristics of the rubber at a predetermined impact pressure—the rebound elasticity and the dynamic elastic modulus were studied with the pendulum elastometer KS over a temperature range of 20–100° C. The duration of the stress was .03/.05 second. We estimated the concentration of crosslinks in the rubber samples from the magnitude of the equilibrium modulus. In order to determine this characteristic, we compressed specimens which were 20 mm in height and 10 mm in diameter 15% and studied the relaxation of stress. The specimens were also tested on the pendulum elastometer. Heppler's consistometer operating on the lever weight principle, was adapted for our measurements. The experiments were conducted at 60° C, the thermostatic control being effected with the help of Heppler's ultrathermostat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.