Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.
Deep subterranean layers may be regarded as the most stable environment for microorganisms where possible fluctuations should be explained by geological events only. The analysis of the total amount of microorganisms has revealed that in sedimentary deposits their number is only one order of magnitude lower than the same parameter in soil. Taking into account the depth of sediments the microbial biomass in subterranean rocks has to be considerably larger than that in soils. Permafrost is the most constant and stable environment among deep habitats. Microbial communities survive in permafrost for at least some millions of years. The diversity of organisms and of microbial activities after permafrost thawing displays distinct differences to those in soils. The abundance of the bacterial biomass assumed is comparable in frozen and unfrozen sediments. Therefore, the permanently low temperature in permafrost is a stabilizing factor that sustains life in deep cold biotopes. Studies of microbial communities in permafrost sediments of different lithology and age suggest that the level of subzero temperature and the duration of its influence define the ratio between the hypometabolic cells, readily reversible to proliferation, and the so‐called viable but non‐culturable cells (deep resting cells). To a certain extent, cell aggregates in the extracellular matrix may be regarded as an additional survival mechanism supporting the hypometabolic state of cells. There is indirect evidence for adaptive physiological and biochemical processes in microorganisms during the long‐term impact of cold.
This research aimed to investigate the viability and biodiversity of microbial communities within ancient Arctic permafrost after exposure to a gamma-radiation dose of 100 kGy at low temperature (- 50 °C), low pressure (1 Torr) and dehydration conditions. The main objective was to assess the possibility for long-term survival of Earth-bound microorganisms in the subsurface of Martian regolith or inside small space bodies at constant absorption and accumulation of the gamma radiation dose. Investigated microbial communities had shown high resistance to a simulated Martian environment. After irradiation the total count of prokaryotic cells and number of metabolically active bacterial cells remained at the control level, while the number of bacterial CFUs decreased by 2 orders of magnitude, and the number of metabolically active cells of archaea decreased threefold. Besides, the abundance of culturable bacteria after irradiation was kept at a high level: not less than 3.7 × 10 cells/g. Potential metabolic activity of irradiated microbial communities in general were higher than in the control sample. A fairly high biodiversity of bacteria was detected in the exposed sample of permafrost, although the microbial community structure underwent significant changes after irradiation. In particular, actinobacteria populations of the genus Arthrobacter, which was not revealed in the control samples, became predominant in bacterial communities following the exposure. The results of the study testify that long-term preservation of microbial life inside Martian permafrost is possible. The data obtained can also be evaluated from the perspective of the potential for discovering viable Earth-bound microorganisms on other objects in the Solar system and inside of small bodies in outer space.
The purpose of this research was to investigate the structure of soil bacteria communities present in the Gibson (Australia) and the Sahara (Egypt) deserts, as well as to estimate strain survivability under different environmental factors. It should be noticed that the screening of bacterial resistance to wide spectra of principally different stress conditions was performed for the first time. Experiments were conducted with culturable bacterial communities. Strains were identified using 16S rRNA sequencing, and stress-tolerance was estimated by growing strains in various nutrient media. In order to characterize the community the epifluorescent microscopy and multisubstrate testing were also performed. High bacterial abundance in the desert soils was detected, and there was seen a significant proportion of culturable cells. The close numbers of psychotropic and mesophilic bacteria in arid ecosystems were revealed. The representatives of the Actinobacteria phylum were dominant in the microbial communities, and Firmicutes , Proteobacteria , and Bacteroidetes phyla representatives were also identified. Tolerance of the axenic bacterial cultures, isolated from arid desert ecotopes, to temperature, pH, salts (KCl, NaCl, MgSO 4 , NaHCO 3 ), strong oxidizers (Mg(ClO 4 ) 2 ), and antibiotics (ampicillin, cephalexin, chloramphenicol, tetracycline, doxycycline, kanamycin, rifampicin) was studied. The bacterial isolates were characterized by polyextremotolerance and by the ability to maintain metabolic activity in vitro while influenced by a wide range of physicochemical and biotic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.