The regularities of obtaining foamed alkali-activated geopolymer materials based on different wastes of coal power engineering (fly ash, fuel (boiler) slag, ash, and slag mixture) were considered. The phase composition of the studied waste showed the presence of a significant amount of the amorphous phase, as well as a crystalline phase. mostly in the form of high quartz. The microstructure of studied the waste showed that the fly ash consisted of monodisperse hollow aluminosilicate microspheres, the fuel slag was represented by polydisperse irregular particles, and the ash and slag mixture included both of these materials in different ratios. Blowing agents such as aluminum powder, hydrogen peroxide, and sodium hypochlorite were chosen to achieve the porous structure of the geopolymer materials. The calculations of the geopolymer precursor compositions were carried out. Samples were synthesized, and their physical and mechanical properties, such as density, strength, porosity, and thermal conductivity, were analyzed. The micro- and macrostructure of the samples, as well as the pore distribution of the obtained geopolymers were studied. Conclusions were made on the choice of the most-optimal foaming agent and the optimal coal combustion waste suitable for the synthesis of the geopolymer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.