Lead sulphide (PbS) and zinc-doped lead sulphide (Zn-PbS) thin films were prepared by chemical spray pyrolysis on soda lime glass substrates at a temperature of 250°C. Precursors were prepared from chemical reagents including zinc acetate, lead acetate and thiourea. The deposited films thicknesses and elemental composition were studied by Rutherford backscattering spectroscopy (RBS); the percentages of Pb and S were estimated as 40.58 % and 59.42 %, respectively, while for the Zn-doped sample, the percentages of Zn, Pb and S were respectively 4.84 %, 44.57 % and 50.59 %. Morphological studies revealed that the films were continuous and the particles were uniformly distributed across the substrate surface. AFM probe revealed nanostructured films with particles densely distributed across the substrates surfaces with incorporation of Zn 2+ . Statistical distribution of the grains over a specific projected area indicated average growth height of about 47 nm. Optical studies indicated that the transmission in visible light region of Zn-PbS thin film was superior to that of the undoped sample. Interband transition of both PbS and Zn-PbS films is directly allowed and their energy band gaps were found to be 0.43 eV and 1.45 eV, respectively. Electrical characterization showed that both films are of p-type conductivity with surface resistivity values of the order of 10 4 Ω·cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.