The guanosine trisphosphatase Rap1 serves as a critical player in signal transduction, somatic cell proliferation and differentiation, and cell-cell adhesion by acting through distinct mechanisms. During mouse spermiogenesis, Rap1 is activated and forms a signaling complex with its effector, the serine-threonine kinase B-Raf. To investigate the functional role of Rap1 in male germ cell differentiation, we generated transgenic mice expressing an inactive Rap1 mutant selectively in differentiating spermatids. This expression resulted in a derailment of spermiogenesis due to an anomalous release of immature round spermatids from the seminiferous epithelium within the tubule lumen and in low sperm counts. These spermiogenetic disorders correlated with impaired fertility, with the transgenic males being severely subfertile. Because mutant testis exhibited perturbations in ectoplasmic specializations (ESs), a Sertoli-germ cell-specific adherens junction, we searched for expression of vascular endothelial cadherin (VE-cadherin), an adhesion molecule regulated by Rap1, in spermatogenic cells of wild-type and mutant mice. We found that germ cells express VE-cadherin with a timing strictly related to apical ES formation and function; immature, VE-cadherin-positive spermatids were, however, prematurely released in the transgenic testis. In conclusion, interfering with Rap1 function during spermiogenesis leads to reduced fertility by impairment of germ-Sertoli cell contacts; our transgenic mouse provides an in vivo model to study the regulation of ES dynamics.
Rap1 is a small GTPase that functions as a positional signal and organizer of cell architecture. Recently Rap1 is emerged to play a critical role during sperm differentiation since its inactivation in haploid cells leads to a premature release of spermatids from the supporting Sertoli cell resulting in male infertility. How Rap1 is activated in spermatogenic cells has not yet been determined. Our objective was to investigate on a possible cAMP-mediated activation of Rap1 employing a cAMP analogue selective to Epac, the Rap1 activator directly responsive to cAMP, for stimulating cultured testis germ cells. Here we provide biochemical, cellular and functional evidence that the Epac variant known as Epac2 is expressed as both a transcript and a protein and that it is able to promote Rap1 activation in the cultured cells. A time course immunofluorescence analysis carried out on stimulated cells revealed the translocation of endogenous Epac2, which is cytosolic, towards the site where Rap1 is located, i.e., the Golgi complex, thus documenting the effective Rap1-Epac2 protein interaction 'in vivo' leading to Rap1-GTP loading. A combination of biochemical and molecular techniques supported the immunofluorescence data. The search for the presence of a putative Rap1 downstream effector, described in differentiating somatic cells as a target of cAMP-Epac-activated Rap1, revealed the presence in spermatogenic cells of RA-RhoGAP, a Rap1-activated Rho GTPase-activating protein. Taken together, our results, obtained with endogenously expressed proteins, are consistent with a cAMP/Epac2/Rap1-mediated signaling that could exert its action, among others, through RA-RhoGAP to promote the progression of spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.