Renin-angiotensin II-aldosterone axis has long been known as a regulator of blood pressure and fluid homeostasis. Yet, local renin-angiotensin II systems have been discovered and novel actions of angiotensin II (AngII) have emerged among which its ability to act as a immunomodulator and profibrotic molecule. The enzyme responsible for its synthesis, Angiotensin-converting-enzyme (ACE), is present in high concentrations in lung tissue. In the present paper, we review data from studies of the past decade that implicate AngII and functional polymorphisms of the ACE gene that increase ACE activity with increased susceptibility for asthma and chronic obstructive pulmonary disease (COPD) and for pulmonary hypertension. Moreover, drugs that inhibit the synthesis of AngII (ACE inhibitors) or that antagonize its actions on its receptors (Angiotensin II receptor blockers -ARBs) have been shown to provide beneficial effects. Another recent discovery reviewed is the presence of a homologue of ACE, ACE2, which cleaves a single amino acid from AngII and forms a heptapeptide with vasodilatory actions, Ang 1-7. The balance between ACE and ACE2 is crucial for controlling AngII levels. ACE and ACE2 also appear to modify the severity of Acute Respiratory Distress Syndrome (ARDS), with ACE2 playing a protective role. Finally, mention is made to the recent discovery of ACE2 as a receptor for the SARS Corona Virus.
Clear decrements in lung function have been reported in patients with diabetes over the past two decades, and many reports have suggested plausible pathophysiological mechanisms. However, there are no reports of functional limitations of activities of daily living ascribable to pulmonary disease in patients with diabetes. This review attempts to summarize the available information from the present literature, to describe the nature of the lung dysfunction in diabetes and the emerging clinical implications of such dysfunction.
Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by μCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by μCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.
Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model.Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall faithfully reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.
BackgroundSpondyloarthritis (SpA) is a complex disease characterised by chronic inflammation, bone erosion and pathological new bone formation. The TgA86 transmembrane TNF (tmTNF) transgenic mouse is a unique model of SpA, developing spontaneously and with 100% incidence early progressive SpA characterised by peripheral inflammatory arthritis and axial ankylosing spondylitis with cardiovascular involvement. This closely recapitulates the pathological findings and comorbid conditions described in human patients.ObjectivesTo characterise in greater detail the development and progression of theTgA86 pathology and its similarities to human disease and to standardise reliable preclinical protocols and specific readouts for the assessment of the efficacy of human therapeutics.MethodsTgA86 peripheral and axial pathology was assessed at different time points from 2.5 to 28 weeks of age. Disease severity was evaluated using clinical parameters and histopathological analysis of ankle and sacroiliac joints, lumbar and caudal vertebrae, as well as whole mount skeletal staining. Clinical and histopathological readouts were used to assess the therapeutic effect of Etanercept that was administered thrice weekly at 30 mg/Kg starting either from 2.5–5 weeks of age (prophylactic protocol) or from 9 weeks of age (therapeutic protocol).ResultsClinical pathology in TgA86 mice appears already from 2.5 weeks of age, with signs of paw swelling, digit deformation and tail crinkling, while by 9 weeks of age pathology is fully established, with severe peripheral arthritis and tail and spine ankylosis. Pathology progression was also evident histopathologically, characterised by the originally described features of progressive inflammation, cartilage destruction and bone erosion observed in sacroiliac and ankle joints as well as in lumbar and caudal vertebra. Additionally, new pathology features were detected by identifying signs of enthesitis, new bone formation appearing as cartilaginous structures at the edges of vertebrae endplates, presence of red bone marrow during all stages of disease progression as well as signs of intervertebral disc (IVD) degeneration. Prophylactic treatment with Etanercept ameliorated effectively all clinical and histopathological features of the peripheral and axial pathology. Therapeutic treatment while affecting only minimally the clinical signs of both peripheral and axial pathology, it was found to reduce the peripheral arthritis histopathological score by at least 50%. Finally, treatment with Etanercept was also efficient in ameliorating the comorbid heart valve pathology observed in these animals.ConclusionsWe have shown that TgA86 pathology includes features of sacroiliitis, enthesitis, new bone formation, persisting red bone marrow and intervertebral disk degeneration, further strengthening the similarities of this model to human pathology. Based on the assessment of all pathology features during prophylactic anti-TNF treatment we suggest that early on in disease there may be a therapeutic window during w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.