This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.
MAN Diesel & Turbo recently developed a completely new gas turbine family for the first time in its history. The first product line contains both two-shaft and single-shaft gas turbines in the 6 – 7 MW class. The two-shaft engine was thoroughly tested at MAN’s gas turbine test center, and the first engine has been delivered to a launch customer. For MAN, it constitutes a technology platform that will produce further developments and new models in the coming years. The two-shaft design makes the new gas turbine an ideal mechanical drive for both turbo compressors and pumps. This gas turbine operates to suit the optimum duty point of the driven machine; both in a wide speed and power range. The two stage power turbine design allows for a wide speed range of 45 to 105% while maintaining high efficiency. For power generation a single-shaft version has been created by adding one additional stage to the two stage high pressure turbine. The compressor pressure ratio is 15, which is high enough for achieving the highest potential efficiency for both generator and compressor drive applications. Low pollutant emission levels are achieved with MAN’s DLN combustion technology. The gas turbine exhaust temperature is sufficiently high to reach high heat recovery rates in combined heat and power cycles. Another important feature of the new gas turbine is its unrestricted suitability for taking load quickly and rapid load changes. Service costs have also been significantly improved upon. MAN opted for a sturdy and modular gas turbine construction, while not compromising on efficiency. The objective is to extend service life and shorten down time occurrences. The modular package assembly process helps to reduce routine maintenance and repair time, and ultimately package downtime.
MAN Diesel & Turbo has developed a new gas turbine in the 6 MW-class for both mechanical drive and power generation applications. The lay-out of the Gas Turbine has been driven by opportunities in current and future markets and the positioning of the competition, and this has determined the characteristics and technical parameters which have been optimized in the 6 MW design. The design makes use of extremely high precision engineering so that the assembly of sub components to modules is a smooth flowing process and can guarantee both the high standards in quality and performance which MAN Diesel & Turbo is aiming for. Individual components have been tested and thoroughly validated. These tests include in particular the compressor of the gas turbine and the combustion chamber. The commissioning of the gas turbine prototype engine had been prepared with a numerous number of measuring probes and carried out at the Oberhausen plant gas turbine test field. Results of component and the gas turbine prototype tests will be presented and discussed.
The THM 1304 industrial gas turbine is a two shaft machine incorporating a two stage free power turbine suitable for mechanical and generator drive applications (Fig. 1). As part of an ongoing uprating and upgrading program design modifications were made to the power turbine. The aim was not only to increase power output and efficiency but also to improve on the high availability. The latest design incorporates new blades and vanes, increasing the aerodynamic efficiency and improving the high temperature endurance. Additionally, a new single piece casing and a redesigned mechanical turbine discs arrangement and shaft leads to a higher performance and optimized maintainability. The up rated turbine covers the entire nominal design load range from 9 to 14 MW and extends the available speed range compared to its predecessor. Furthermore, compatibility with the existing product range has been considered. A test program was carried out on the MAN TURBO test bed in Oberhausen, Germany to verify the achievement of the design goals. The program covered not only thermodynamic and aerodynamic measurements but also temperature and mechanical measurements. Special emphasis was put on the validation of the vibration characteristics by means of a telemetry system. Examples will highlight the development testing program in detail. The first production engine went into service at the WINGAS pipeline compression station in Reckrod, Germany. Not only the station layout but also the purpose of the station will be described. Service data registered by the installed monitoring system within the first 10,000 service hours will be discussed and the service experience with the new engine will be presented. During the in house test program the entire turbine performance map was covered.
As part of an ongoing development program to increase power output and efficiency of the THM 1304 gas turbine, modifications were made to the high pressure turbine. The modifications include but are not limited to blade and vane aerodynamics, cooling system and clearance control, mechanical design and materials. The development was to achieve the following goals: • Intensified blade and vane cooling to permit higher turbine inlet temperatures and to further extend service lifetime; • Improved aerodynamic performance; • Blades with pre-loaded tip shrouds to achieve low vibration amplitudes in a broad operating speed range; • Rotor design modifications to simplify assembly and disassembly; • Modified vane carrier and casing designs for optimal tip clearance control and turbine performance. The improved high pressure turbine was extensively tested in MAN TURBO’s full-load gas turbine test facility. Test results verified that component temperatures were within the expected range and design targets have been achieved. The first production gas turbine equipped with the upgraded high pressure turbine was installed in May 2004 as a gas compressor driver. To date a total of 11 units have gone into operation including units for power generation. Dry low emission technology is used on all engines. Every unit is monitored by an online data monitoring system and visually inspected in shorter intervals to verify the behavior in the field. Operation of the fleet is flawless at this time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.