Purpose
– The combined heat and power dispatch (CHPD) aims to optimize the outputs of online units in a power plant consisting thermal generators, co-generators and heat-only units. Identifying the operating point of a co-generator within its feasible operating region (FOR) is difficult. This paper aims to solve the CHPD problem in static and dynamic environments.
Design/methodology/approach
– The CHPD plant operation is formulated as an optimization problem under static and dynamic load conditions with the objectives of minimizations of cost and emissions subject to various system and operational constraints. A novel bio-inspired search technique, grey wolf optimization (GWO) algorithm is used as an optimization tool.
Findings
– The GWO-based algorithm has been developed to determine the preeminent power and heat dispatch of operating units within the FOR region. The proposed methodology provides fuel cost savings and lesser pollutant emissions than those in earlier reports. Particularly, the GWO always keeps the co-generator’s operating point within the FOR, whereas most of the existing methods fail.
Originality/value
– The GWO is applied for the first time to solve the CHPD problems. New dispatch schedules are reported for 7-unit system with the objectives of total fuel cost and emission minimizations, 24-unit system for economic operation and 11-unit system in dynamic environment. The simulation experiments reveal that GWO converges quickly, consistent and the statistical performance clears its applicability to CHPD problems.
This paper deals with a Unit Commitment (UC) problem of a power plant aimed to find the optimal scheduling of the generating units involving cubic cost functions. The problem has non convex generator characteristics, which makes it very hard to handle the corresponding mathematical models. However, Teaching Learning Based Optimization (TLBO) has reached a high efficiency, in terms of solution accuracy and computing time for such non convex problems. Hence, TLBO is applied for scheduling of generators with higher order cost characteristics, and turns out to be computationally solvable. In particular, we represent a model that takes into account the accurate higher order generator cost functions along with ramp limits, and turns to be more general and efficient than those available in the literature. The behavior of the model is analyzed through proposed technique on modified IEEE-24 bus system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.