A growing body of research now implicates the cerebellum in the formation and storage of the critical neural plasticity that subserves the classically conditioned eye-blink response. Previous anatomical, physiological, and behavioral research suggests that auditory-conditioned stimulus information is routed to the cerebellum by the pontine nuclei. However, it has also been observed from multiple unit recordings that some populations of pontine cells, in addition to showing auditory-evoked responses, also show changes in activity that is learning-related. It is unknown whether this learning-related activity is generated by the pontine cells or whether it is generated by some other structure and projected to the pontine nuclei. Because the cerebellum has been implicated in the formation of the essential plasticity that subserves this learned behavior, we examined how multiple unit recordings of learning-related activity within the pontine nuclei are affected by reversible inactivation of the interpositus nucleus of the cerebellum. The results indicated clearly that when the interpositus nucleus was inactivated, the learning-related activity in the pontine nuclei was abolished completely and the auditory stimulus-evoked activity was unaffected. In contract, when the facial nucleus was inactivated, both the auditory stimulus and the learning-related activity 1Corresponding author.were still present. These results indicate that the learning-related activity exhibited by some populations of pontine nuclei cells is dependent on the interpositus nucleus and may represent feedback from the cerebellum.
The pontine nuclei carry auditory conditioned stimulus information to the cerebellum during classical conditioning of the nictitating membrane response in rabbits. In well-trained animals learning-related as well as stimulus-evoked unit activity can be recorded throughout the pontine nuclei but particularly in the lateral and dorsolateral pons. Recent work in our laboratory has provided evidence that the learning-related unit activity in the pons is dependent on the interpositus nucleus and that the pons is not a site of essential plasticity for the learned response. In the present study we considered the question of whether learning-related unit activity might be projected from the interpositus nucleus to the pons through the red nucleus, a primary output target of the interpositus and a structure known to be essential for expression of the learned response. Multiple unit recordings were taken from lateral and dorsolateral pontine locations in well-trained rabbits before and during cooling of the red nucleus. Analysis of pooled data for all recording locations within the lateral and dorsolateral pons indicated that reversible inactivation of red nucleus abolished both stimulus-evoked and learning-related unit activity. However, we also found discrete recording locations where stimulus-evoked and learning-related 1Corresponding author. unit activity were attenuated but not abolished by red nucleus cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.