No abstract
<p>A bifocal panoramic stereoscopic camera (BIPS) has been designed a realized as a terrestrial prototype. The core of the camera is a novel Bifocal Panoramic Lens (BPL) we designed and realized, which is able to carry out a panoramic field of 360&#176; in azimuth, 100&#176; in elevation (+60&#176;/-40&#176; with respect to the horizon) and, simultaneously, an enlargement of a part of the panoramic field. All of that using an unique image sensor and avoiding any moving part. BIPS consists of a twin couple of BPLs settled in an appropriate stereoscopic baseline. It allows the monitoring of the surrounding environment in stereoscopic (3D) mode and, simultaneously, to capture a higher resolution stereoscopic images to analyze scientific cases. If mounted on a planetary rover, BIPS merge engineering stereoscopic capabilities for autonomous driving with an optical stereoscopic channel for scientific purpose, making it a new paradigm in the planetary rovers' framework.</p> <p>The operational aims include the identification of boulders, crevasses and other surfaces that can be obstacles for rover trafficability, in addition to the 3D reconstruction of exploration sites for improving situation awareness during both roving and human operations. On the other hand, the correct and detailed 3D reconstruction of exploring sites allows detailed measurements of many geological features such as: sedimentary structures (strata attitudes, geometry and thickness); fracturing networks (attitudes and persistence); folds and faults systems (orientation, vergence and displacement); veining systems (frequency, orientation and thickness); mounds, vents and ridges (slope and aspect); boulders (size frequency distribution). All these measurements are pivotal for the understanding of tectonic, sedimentologic, volcanic, erosive, fluid-rock interaction and impact processes on planetary surfaces.</p> <p>In this paper we describe the optical characteristics of a BPL, the realized terrestrial BIPS, the stereoscopic calibration and some possible scientific cases within the lunar exploration framework.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.