Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.
Abstract. In the present study, fast formation and characterization of biofilm and its role on power generation in the microbial fuel cell (MFC) were investigated and the biofilm formation was also correlated with electrochemical behavior of the MFC. MFC was operated with palm oil mill effluent as substrate and carbon cloth as electrode. A biofilm comprising electrochemically active bacteria on the anode surface showed crucial effect to enhance the performance of the MFC. Infrared spectroscopy and thermogravimetric analysis confirmed the presence of biofilm and scanning electron microscopy examined a biofilm and microbial clumps on electrode surface. The current density was directly dependent on the biofilm growth and increased significantly during the initial growth. Electrochemical impedance spectroscopy was done to monitor the progress of the anode colonization by the microorganisms in the MFC. The findings of this study demonstrated that biofilm formation facilitated electron transport as well as decreased the charge transfer resistance of the anode and thus increased the power generation in the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.