We present a new measurement of the positive muon magnetic anomaly, a µ ≡ (gµ − 2)/2, from the Fermilab Muon g −2 Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω′ p , and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/ω ′ p , together with precisely determined external parameters, we determine a µ = 116 592 057(25) × 10 −11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a µ (FNAL) = 116 592 055(24) × 10 −11 (0.20 ppm). The new experimental world average is aµ(Exp) = 116 592 059(22) × 10 −11 (0.19 ppm), which represents a factor of two improvement in precision.
The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb 3 Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.
Fermilab is involved in the development of new generation high-field accelerator magnets using state-of-the-art Nb 3 Sn strands produced using different technologies. Two 1-m long models -mirror configuration and dipole magnet -were fabricated recently at Fermilab based on powder-in-tube (PIT) Nb 3 Sn strands with small effective filament size. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results of PIT coil testing.
The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.